"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 5, 2018

contents of issue      DOI  10.30898/1684-1719.2018.5.5       full text in Russian (pdf)  

The task of developing a model of a digital platform for the collection, processing and dissemination of spatial data, built using a network-centric aviation monitoring system

 

I. B. Arhimandritov, S. G. Belov, V. S. Verba, A. A. Lipatov, D. A. Milyakov, I. A. Sidorov, D. Yu. Chetirkin

Joint Stock Company “Radio Engineering Corporation “Vega”, Kutuzov avenue, 34, Moscow 121170, Russia

 

 The paper is received on May 8, 2018

 

Abstract. The formulation of the task of developing a model of a digital platform for the collection, processing and dissemination of spatial data, constructed using a network-centric aviation monitoring system, is considered. The directions of research necessary to solve the set task and, in the aggregate, make up interdisciplinary scientific research, covering the subject domains of information technologies, methods of artificial intelligence in solving planning problems, the theory of group control of objects, statistical theory of optimal signal processing, radiometry, data integration. The analysis of the current state of research in the field is carried out, approaches and methods for solving the problems are proposed. It is shown that the developed model of the spatial data collection and processing segment can be used as a methodological basis for the practical implementation of a digital platform for the collection, processing and dissemination of spatial data that meets the needs of the state, business and citizens in obtaining up-to-date and reliable information about objects, including, moving, as well as on the terrestrial and water surfaces in the areas of interest.

Keywords: digital economy, digital platform, aviation monitoring, hardware and software architecture, functional architecture, open architecture, cloud computing, radar systems, optoelectronic systems, radio monitoring systems, radiometric systems, interferometry, group management, intellectual planning, artificial intelligence methods.

References

1.       Zharkov A.A. System of interdepartmental electronic interaction. Molodoj uchonij ‑ Young Scientist, 2014, No. 14, pp. 41-45. Available at: https://moluch.ru/archive/73/12406 (in Russian).

2.       Shirokova E.A. Cloud Technologies. Sovremennie tendentsii tehnicheskih nauk: materiali mezshdunarodnoj nauchnoj konferentsii [Modern trends in engineering: The international. sci. Conf.], Ufa, October 2011, pp. 30-33 (in Russian).

3.       Verba V.S. Aviatsionnije kompleksi radiolokatsionnogo dozora I navedenija. Printsipi postroenija, problemi razrabotki I osobennosti funktsionirovanija. [Aviation complexes of radar surveillance and guidance. Principles of construction, problems of development and features of functioning], monograph, Moscow, publishing house “Radio Engineering”, 2014, 528 p. (in Russian).

4.       Arhimandritov I.B., Belov S.G., Belik B.V., Verba V.S., Merkulov V.I., Milyakov D.A. and others. Kompleksi s bespilotnimi letatel’nimi apparatami. Sostojanije i perspektivi. [Complexes with unmanned aircraft. Status and prospects]. Monograph. Ed. V.S. Verba, Moscow, publishing house “Radio Engineering”, 2016 (in Russian).

5.       Ruoxin Shi, Lifen Liu, Shuandao Li, and Jiang Wu. Command and Control Configuration Based on Service Reconfiguration for Unmanned Aircraft Systems. Proceedings of 2016 IEEE Chinese Guidance, Navigation and Control Conference, August 12-14, 2016, Nanjing, China, pp. 1997-2000.

6.       Gorodetsky V.I. Applied multi-agent systems of group management. Iskusstvennij intellect i prin’atije reshenij ‑ Artificial Intelligence and Decision Making, 2009, No. 2. Ñ. 3-24 (in Russian).

7.       Kimon P. Valavanis, George J. Vachtsevanos. Editors. Handbook of Unmanned Aerial Vehicles. Springer Dordrecht Heidelberg New York London. DOI 10.1007/978-90-481-9707-1.

8.       L. Geng, Y. F. Zhang, J. J. Wang, J. Y. H. Fuh, and S. H. Teo. Mission planning of autonomous UAVs for urban surveillance with evolutionary algorithms. In 10th IEEE International Conference on Control and Automation (ICCA), 2013.

9.       X. Cheng, D. Cao, and C. Li. Survey of cooperative path planning for multiple unmanned aerial vehicles. Applied Mechanics Materials, 2014, pp. 667-679.

10.   Handbook of Constraint Programming. Edited by F. Rossi, P. van Beek and T. Walsh. Elsevier. 2006.

11.   Kalyajev I.A., Gajduk A.R., Kapustyan S.G. Modeli I algoritmi kollektivnogo upravlenija v gruppah robortov. [Models and algorithms of collective management in groups of robots], Ìoscow, FIZMATLIT Publ., 2009, 280 p. (in Russian).

12.   SPH Engineering Centralized Drone Management System (available at: http://www.sph-engineering.com, UgCS Centralized drone management (available at: https://www.ugcs.com).

13.   Andrew Sutton, Barıs Fidan, Dirk van der Walle. Hierarchical UAV Formation Control for Cooperative Surveillance. Proceedings of the 17th World Congress The International Federation of Automatic Control, Seoul, Korea, July 6-11, 2008, pp. 12087-12092.

14.   HuZhi-wei, LiangJia-hong, ChenLing, WuBing. A Hierarchical Architecture for Formation Control of Multi-UAV. Procedia Engineering, Volume 29, 2012, pp. 3846-3851.

15.   Kharkov V.P., Merkulov V.I. Synthesis of the algorithm for hierarchical control of a group of UAVs. Informatsionno-izmeritelnie i upravlyajushije sistemi ‑ Information-measuring and control systems, 2012, No. 8, pp. 61-67 (in Russian).

16.   Wei Meng, Zhirong He, Rong Su, Ahmad Reza Shehabinia, Liyong Lin, Rodney Teo, Lihua Xie. Decentralized Control of Multi-UAVs for Target Search, Tasking and Tracking. Proceedings of the 19th World Congress The International Federation of Automatic Control. Cape Town, South Africa. August 24-29, 2014, pp. 10048-10053.

17.   Nathan Michael Paczan, Michael John Elzinga, Raphael Hsieh, Luan Khai Nguyen. Collective unmanned aerial vehicle configurations. US20160378108A1. US Application. Current Assignee: Amazon Technologies Inc., Priority date: 2015-02-19.

18.   James Alexander Stark, Clifford Wong, Robert Scott Trowbridge. Controlling unmanned aerial vehicles as a flock to synchronize flight in aerial displays. US20140249693A1. US Application. Current Assignee: Disney Enterprises Inc. Priority date: 2013-02-15.

19.   Merkulov V.I., Milyakov D.A., Samodov I.O. Optimization of the algorithm for group control of unmanned aerial vehicles in the local network. Izvestija YuFU. Tehnicheskije nauki ‑ News of South Federal University. Technical science, 2014, No. 12(161), pp. 157-166 (in Russian).

20.   Kharkov V.P., Merkulov V.I. Formation of a given configuration of a complex distributed control system. Radiotehnika Radio Engineering, 2011, No. 6, pp. 96-101 (in Russian).

21.   Kharkov V.P., Merkulov V.I. Synthesis of algorithm for hierarchical control of a UAV group. Informatsionno-izmeritelnie i upravlyajushije sistemi ‑ Information-measuring and control systems, 2012, No. 8, pp. 61-67 (in Russian).

22.   Merkulov V.I., Kharkov V.P., Shamarov N.N. Optimization of collective control of a group of unmanned aerial vehicles. Informatsionno-izmeritelnie i upravlyajushije sistemi ‑ Information-measuring and control systems, 2012, No. ¹7, pp. 3-7 (in Russian).

23.   Bury A.S., Fomichev I.D. Multiagent models for managing groups of autonomous aircraft. Informatsionno-ekonomicheskije aspekti standartizatsii i tehnicheskogo regulirovanija: nauchnij internet-zshurnalInformation-economic aspects of standardization and technical regulation: Scientific Internet-journal, 2013, No.  2(12). Available at: http://iea.gostinfo.ru/files/2013_02/2013_02_06.pdf (in Russian).

24.   Amelin K.S., Granichin O.N. Multi-agent network control of a group of light UAVs. Nejrokompjuteri: razrabotka, primenenije ‑ Neurocomputers: development, application, 2011, No. 6, pp. 64-72 (in Russian).

25.   Vasiliev V.I., Ilyasov B.G. Intellektualnie sistemi upravlenija: teorija I praktika: uchebnoje posobije. [Intelligent control systems. Theory and practice: a textbook], Moscow, publishing house “Radio Engineering”, 2009, 392 p. (in Russian).

26.   Tarasov V.B. Ot mnogoagentnih system k intellectual’nim organizatsijam: filosofija, psihologija, informatika. [From multi-agent systems to intellectual organizations: philosophy, psychology, informatics], Moscow, Editorial URSS, 2002, 352 p. (in Russian).

27.   Narinyani A.S. Underdetermination in the system of representation and processing of knowledge. Izvestija Akademii Nauk USSR. Tehnicheskaja kibernetika ‑ Izv. AS USSR. Techn. Cybernetics, 1986, No. 5, pp. 3-28 (in Russian).

28.   V.A. Plyushchev. Results of the development and direction of the development of multifrequency aviation complexes RSA. Naukojomkije tehnologii ‑ High technology, 2004, No. 8-9 (in Russian).

29.   G.S. Kondratenkov, editor. Aviatsionniej sistemi radiovidenija. [Aviation systems of radio sight].  Moscow, publishing house “Radio Engineering”, 2015 (in Russian).

30.   M. Vinogradov. Possibilities of modern radar with synthesizing antenna aperture. Zarubezhnoje vojennoje obozrenije ‑ Foreign military review, 2009, No. 2. pp. 52-57 (in Russian).

31.   R. Bamler; P. Hartl. Synthetic aperture radar interferometry. Inv. Probl. 14, august 1998.

32.   Melnikov Yu.P., Popov S.V. Methods for estimating the error in determining the parameters of the motion of an object when locating under conditions of electronic suppression. Radiotehnika Radio Engineering, 1998, No. 3, pp. 34 (in Russian).

33.   Drogalin V.V. et al. Determination of the coordinates and parameters of the motion of radio emission sources from the goniometric data in single-position onboard radar systems. Zarubezhnaja radioelektronika. Uspehi sovremennoj radioelektroniki ‑ Foreign radio electronics. The successes of modern radio electronics, 2002, No.  3 (in Russian).

34.   Jussi Rintanen. Temporal Planning with Clock-Based SMT Encodings. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17), pp. 743-749. Available at: https://doi.org/10.24963/ijcai.2017/103.

35.   Buser Say, Ga Wu, Yu Qing Zhou, Scott Sanner. Nonlinear Hybrid Planning with Deep Net Learned Transition Models and Mixed-Integer Linear Programming. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17), pp. 750-756. Available at: https://doi.org/10.24963/ijcai.2017/104.

36.   Zenkin A.A. Kognitivnaja kompjuternaja grafika. [Cognitive computer graphics]. Edited by D.A. Pospelov, Moscow, publishing house “Nauka”, 1991, 192 p. (in Russian).

37.   Eremeev AP, Chirkov A.V. Realization of cognitive graphics tools for real-time decision-making support systems. 8-ja Natsional’naja konferentsija po iskusstvennomu intellektu s mezhdunarodnim uchastiem KII-2002 [8th National Conference on Artificial Intelligence with International Participation CAI-2002]. Proceedings of the conference. In two vol. T.2. Moscow: Fizmatlit, 2002, pp. 624-631 (in Russian).

38.   Lipatov A.A. Methods and software of intellectualization of the user interface in an application to systems of underdefined calculations. Iskusstvennij intellect i prin’atije reshenij ‑ Artificial Intelligence and Decision Making, 2008, No. 3, pp. 16-27 (in Russian).

39.   Lipatov A.A. Interactive computer graphics in systems of underdefined calculations. Supplement to the journal "Information Technology", 2011, No. 6, pp. 26-29 (in Russian).

40.   Merkulov V.I., Milyakov D.A., Chernov V.S. Trajectory control of surveillance in mobile passive air-based systems. Zhurnal Radioelektroniki ‑ Journal of Radio Electronics, 2012, No. 11. Available at: http://jre.cplire.ru/jre/nov12/10/text.pdf (in Russian).

41.   Verba V.S., Merkulov V.I. Robotic complexes based on unmanned aerial vehicles. Group management issues. Pol’ot – Flight, 2016, No. 4, pp. 48-55 (in Russian).

42.   Belov S.G. Service-oriented process architecture of the information-control system of a multidimensional complex of monitoring the surrounding air-based space. Informatsionno-izmeritelnie i upravlyajushije sistemi ‑ Information-measuring and control systems, 2017, No. 1, pp. 14-19 (in Russian).

43.   Verba V.S., Merkulov V.I. The problems of developing mobile multi-sensor systems for monitoring the surrounding space. Pol’ot – Flight, 2015, No.   5, pp. 31-35 (in Russian).

44.   Verba V.S., Merkulov V.I., Milyakov D.A., Chernov V.S. Integrated multi-sensor systems for monitoring the surrounding space. Zhurnal Radioelektroniki ‑ Journal of Radio Electronics, 2015, No. 4. Available at: http://jre.cplire.ru/jre/apr15/7/text.pdf (in Russian).

45.   Verba V.S., Merkulov V.I., Cherepenin V.A. The problems of developing new-generation onboard radars. Part 1. The radar in the integrated aviation complex. Terms of use. System indicators of excellence. Elektromagnitnie volni i elektronnie sistemiElectromagnetic waves and electronic systems, 2015, No. 8, pp. 4-12 (in Russian).

46.   Verba V.S., Merkulov V.I., Cherepenin V.A. The problems of developing new-generation onboard radars. Part 2. System-wide development issues. Applied problems. Elektromagnitnie volni i elektronnie sistemiElectromagnetic waves and electronic systems, 2015, No. 8, pp. 13-19 (in Russian).

47.   Verba V.S., Merkulov V.I., Cherepenin V.A. The problems of developing new-generation onboard radars. Part 3. Technological problems of development. Elektromagnitnie volni i elektronnie sistemiElectromagnetic waves and electronic systems, 2015, No. 8, pp. 20-24 (in Russian).

48.   S.G. Belov. The use of fuzzy logic in the identification of airborne radar objects in the process of their multi-purpose tracking. Zhurnal Radioelektroniki ‑ Journal of Radio Electronics, 2017. No. 5. Available at: http://jre.cplire.ru/jre/may17/5/text.pdf (in Russian).

49.   Belov S.G. Using pseudo-measurements when filtering object state parameters from observations in a multi-sensor environment. Zhurnal Radioelektroniki ‑ Journal of Radio Electronics, 2017, No. 5. Available at: http://jre.cplire.ru/jre/may17/4/text.pdf (in Russian).

50.   S.G. Belov, V.I. Merkulov, V.A. Cherepenin. Processing of signals from land-based radio emission sources in a monostatic air-borne monitoring system. Journal of Communications Technology and Electronics, 2016, Vol. 61, No. 4, pp. 414-422. DOI: https://doi.org/10.1134/S1064226916040045.

51.   Plyushchev V.A., Sidorov I.A., Chetyrkin D.Yu. et al. Radiolokatsionnije sistemi aviatsionno-kosmicheskogo monitoring zemnoj poverhnosti i vozdushnogo prostranstva. [Radar systems for aerospace monitoring of the Earth's surface and airspace]. Edited by V.S. Verba, B.G. Tatarskiy, Moscow, publishing house “Radio Engineering”, 2014 (in Russian).

52.   Bryzgalov A.P., Isaev O.A., Kovalchuk I.V., Tumanov K.V., Falkov E.Ya., Khnykin A.V., Plyushchev V.A., Chetyrkin D.Yu. The method of searching and detecting an object. Patent of the Russian Federation for invention 2596610 dated 16.06.2015.

53.   Kaplin M.G., Chetyrkin D.Yu., Zamotin M.M., Shishkin A.S., Danilov A.Yu. Combining radar images of radar c from a synthesized aperture in different wavelength ranges. Sbornik XV molod’ozhnoj nauchno-tehnicheskoj konferentsii “Radiolokatsija i sv’az’ – perspeltivnie tehnologii” [Collection of the XV youth scientific and technical conference "Radar and communication ‑ advanced technology."]. Conference materials, Moscow, 2017, pp. 38-45 (in Russian).

54.   Verba V.S., Shutko A.M., Gulyaev Yu.V., Krapivin V.F., Sidorov I.A., Novichikhin E.P., Plyushchev V.A. and others. Microwave radiometry of the terrestrial and water surfaces: from theory to practice. Akademicheskoe izdatel’stvo imeni professor Marina Drinova [Academic publishing house named after prof. Marina Drinova], Sofia, 2014, ISBN 978-954-322-708-2 (in Russian).

55.   Belik B.V., Belov S.G. Using an advanced Kalman filter to track a mobile airborne radio-frequency target in an airborne passive radar. Sbornik trudov XXII mezhdunarodnoj nauchno-tehnicheskoj konferentsii “Radiolokatsiya, radionavigatsija, sviaz’” [Proceedings of the XXII International Scientific and Technical Conference "Radiolocation, radio navigation, communication"], Voronezh, Publishing house SAFVOEE LLC, 2016 (in Russian).

56.   Belik B.V., Belov S.G. Multipurpose tracking of sources of radio emission in a single-position airborne radio monitoring system. Zhurnal Radioelektroniki ‑ Journal of Radio Electronics, 2017, No. 5. Available at: http://jre.cplire.ru/jre/may17/3/text.pdf (in Russian).

 

For citation:
I. B. Arhimandritov, S. G. Belov, V. S. Verba, A. A. Lipatov, D. A. Milyakov, I. A. Sidorov, D. Yu. Chetirkin. The task of developing a model of a digital platform for the collection, processing and dissemination of spatial data, built using a network-centric aviation monitoring system. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 5. Available at http://jre.cplire.ru/jre/may18/5/text.pdf

DOI  10.30898/1684-1719.2018.5.5