"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 5, 2019

contents of issue      DOI  10.30898/1684-1719.2019.5.4     full text in Russian (pdf)  



À. F. Belyanin1, A. S. Bagdasarian2,3, Yu. V. Gulyaev3, A. I. Yurin 4 , E. R. Pavlyukova3 

1 Central Research Technological Institute “Technomash”, 4, Ivan Franko Str., Moscow 121108, Russia

2 “Scientific engineering center “Technological developments of telecommunication and radio frequency identification”, 4-1 Sukharevskaya Sq., Moscow 127051, Russia

3 Kotelnikov Institute of Radio-engineering and Electronics RAS, 11-7 Mokhovaya Str., Moscow 125009, Russia

4 National Research University Higher School of Economics, 34 Tallinskaya Str., Moscow, 123592, Russia


The paper is received on May 6, 2019


Abstract. Opal matrixes represent the regular 3D-pack of spherical particles of amorphous SiO2, forming an ordered system of voids. Opal matrixes with spherical particles of SiO2 diameter d  260 nm (Δd  2%) were synthesized. Nanocomposites were formed by filling voids (occupying ~26% of the volume) of opal matrixes by salt solutions, low-temperature heat treatment at 625–825 K and annealing at 975–1475 K. The formation in the voids of opal matrixes, depending on synthesis conditions, of the synthesized substances, SiO2 and products of interaction synthesized substances with SiO2 are submitted. The frequency dependences of the conductivity, real and imaginary components of the dielectric and magnetic permeability of nanocomposites containing crystallites 16–65 nm in size of magnetic materials — double phosphates (LiNiPO4, LiCoPO4) and vanadates (GdVO4 and DyVO4) were measured. The dielectric losses of nanocomposites remain low (at a level of ~0.06) in the frequency range 107–1010 Hz for nanocomposites with DyVO4 and LiCoPO4. The dielectric loss increases both in the direction of low frequencies (<106 Hz) and in the direction of THz frequencies. Investigations have demonstrated that the measured parameters are influenced by the phase composition, as well as the structural and magnetic state of the synthesized substances.

Keywords: opal matrixes; nanocomposites; double phosphates of Li and Ni(Co); vanadates of Gd and Dy; dielectric and magnetic properties.


1. Armstronga E., O’Dwyer C. Artificial opal photonic crystals and inverse opal structures – fundamentals and applications from optics to energy storage. Journal of materials chemistry C. 2015. Vol. 3. No. 24. P. 6109–6143.

2. Rinkevich A.B., Burkhanov A.M., Samoilovich M.I., Belyanin A.F., Kleshcheva S.M., Kuznetsov E.A. Three-dimensional nanocomposite metal dielectric materials on the basis of opal matrices. Russian journal of general chemistry. 2013. Vol. 83. No. 11. P. 2148–2158.

3. Tuyen L.D., Wu C.Y., Anh T.K., Minh L.Q., Kan H-C., Hsu C.C. Fabrication and optical characterization of SiO2 opal and SU-8 inverse opal photonic crystals. Journal of experimental nanoscience. 2012. Vol. 7. No. 2. P. 198204.

4. Mıguez H., Blanco A., Lopez C., Meseguer F., Yates H.M., Pemble M.E., Lopez-Tejeira F., Garcıa-Vidal F.J., Sanchez-Dehesa J. Face centered cubic photonic bandgap materials based on opal-semiconductor composite.  Journal of lightwave technology. 1999. Vol. 17. No. 11. P. 1975–1981.

5. Nishijima Y., Ueno K., Juodkazis S., Mizeikis V., Misawa H., Tanimura T., Maeda K. Inverse silica opal photonic crystals for optical sensing applications.  Optics express. 2007. Vol. 15. No. 20. P. 12979–12988.

6. Sarychev A.K., Shalaev V.M. Electrodynamics of metamaterials. World scientific and Imperial college press. 2007. 200 p.

7. Belyanin À., Bagdasarian A., Bagdasarian S., Luchnikov P., Katakhova N. Magnetic nanocomposites based on opal matrices. Key engineering materials. 2018. Vol. 781. Ð. 149–154.

8. Samoilovich M.I., Rinkevich A.B., Belyanin A.F. Absorption of electromagnetic waves of millimeter waveband in metamaterials based on opal matreices. The experience of designing and application of CAD systems in microelectronics. Proceedings (IEEE) of the 10th International Conference CADSM 2009. Lviv–Polyana. Ukraine. 2009. P. 48–50.

9. Urusov V.S., Samoilovich M.I., Sergeeva N.S., Belyanin A.F., Shvanskaya L.V., Sviridova I.K., Kirsanova V.A., Bychkov A.Yu., Achmedova S.A., Klescheva S.M. Formation of biocomposites based on natural geyserites and synthetic opals academician.  Doklady byological sciences. 2008. Vol. 423. No. 1. P. 473–477.

10. Samoilovich MI, Belyanin AF, Rinkevich AB, Bovtun V., Kempa M., Nuzhnyy D., Savinov M. Structure, magnetic and dielectric properties of nanocomposites: opal matrices - rare-earth vanadates. Nano- I mikrosistemnaya tekhnika -  Nano- and Microsystem technology. 2016 .No. 2. P. 78–90. (In Russian)

11. Samoilovich M.I., Rinkevich A.B., Bovtun V., Belyanin A.F., Kempa M., Nuzhnyy D., Tsvetkov M.Yu., Kleshcheva S.M. Optical, magnetic, and dielectric properties of opal matrices with intersphere nanocavities filled with crystalline multiferroic, piezoelectric, and segnetoelectric materials. Russian journal of general chemistry. 2013. Vol. 83. No. 11. P. 2132–2147.


For citation:

À.F.Belyanin, A.S.Bagdasaryan, Yu.V.Gulyaev, A. I. Yurin, E.R.Pavlyukova. Structure, dielectric and magnetic properties of nanocomposites based on opal matrixes, phosphates and vanadates of metals. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 5. Available at http://jre.cplire.ru/jre/may19/4/text.pdf

DOI  10.30898/1684-1719.2019.5.4