"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 5, 2019

contents of issue      DOI  10.30898/1684-1719.2019.5.5     full text in Russian (pdf)  

Self-intersection of complex asymptotic manifolds of hyperbolic equilibrium, position and non-existence of first integrals in the systems of the type of Hamiltonian with two degrees of freedom

 

S. L. Ziglin

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia

 

 The paper is received on May 13, 2019

 

Abstract. We investigate the sufficient conditions of infinite to one transversal on the level surface of known first integrals self-intersection of complex asymptotic manifolds of hyperbolic equilibrium position of the system of ordinary differential equations of the type of Hamiltonian with two degrees of freedom (the number of known first integrals is three less than the dimension of the system). The obtained results are applicable to the problem on motion of dynamically symmetric rigid heavy body around a fixed point, Suslov’s problem on the motion of a rigid body around a fixed point with non-holonomic constraint, to the Henon-Heiles system, to the system, describing the stationary flow of ideal non-compressive liquid, called ABC-dynamo.

Keywords: self-intersection of complex asymptotic manifolds of hyperbolic equilibrium position, nonexistence of first integrals.

References

1.     Arnold V.I. Obyknovennye differentsial’nye uravneniya [Ordinary differential equations]. Moscow, Nauka Publ., 1974 (In Russian)

2.     Arnold V.I., Ilyashenko Yu.S. Obyknovennye differentsial’nye uravneniya [Ordinary differential equations]. In the book: Itogi nauki i tekhniki. Sovremennye provkemy matematiki . Tom 1 [Results of science and technology. Modern problems of mathematics. Volume 1]. Moscow, VINITI, 1985, pp.7-49 (In Russian)

3.     Kobayashi S., Nomizu K. Foundations of differential geometry. John Wiley & Sons, Inc. 1996

4.     Ziglin S.L. Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics. I. Functional Analysis and its applications, 1982, Vol. 16, No. 3, pp.181-189

5.     Postnikov M.M., Rudak Yu.B. Morse Lemma. In the book: Matamaticheskaya entsiklopediya, Tom 3 [Mathematical encyclopedia, Vol. 3] Moscow, Sovetskaya entsiklopediya Publ., 1982, pp. 824-825. (In Russian)

6.     Shabat B.V. Vvedenie v kompleksnyi analiz [Introduction into complex analysis]. Moscow, Nauka Publ., 1969 (In Russian)

7.     Arnold V.I. Matematicheskie metody klassicheskoy mekhaniki [Mathematical methods of classical mechanics]. Moscow, Nauka Publ., 1974 (In Russian)

8.     Henon M. Sur la topologie de lignes de courant dans un cas particulier. C.R. Acad. Sci. Paris, 1966, Vol. 262, pp. 312-314

9.     Zaslavskiy G.M., Sagdeev P.Z., Usikov U.A., Chernikov A.A. Slabyi khaos i kvaziregulyarnye struktury [Weak chaos and quasi-regular structures]. Moscow, Nauka Publ., 1991 (In Russian)

10. Ziglin S.L. The ABC-flow is not integrable for A=B. Functional Analysis and its applications, 1996, Vol. 30, No. 2, pp.137-138

11. Ziglin S.L., Cherepenin V.A. Nonintegrability of an ABC-flow  with A=B=C.  Doklady Mathematics, 1999, Vol. 60, No. 3, ñ. 441-442.

12. Ziglin S.L. An Analytic Proof of the Nonintegrability of the ABC-flow for A=B=C. Functional Analysis and its applications, 2003, Vol. 37, No. 3, pp. 225-227

13. Henon M., Heiles C. The applicability of the third integral of motion some numerical experiments. Astron J., 1964, Vol. 69, pp. 73-79.

14. Ziglin S.L. Branching of solutions and the nonexistence of first integrals in Hamiltonian mechanics. II. Functional Analysis and its applications 1983, Vol. 17, No. 1, pp. 6–17.

15. Suslov G.K. Teoreticheskaya mekhanika [Theoretical mechanics]. Moscow,-Leningrad, Gostekhizdat Punl., 1946 (In Russian)

16. Kozlov V.V. On the theory of integration of the equations of nonholonomic mechanics.  Uspekhi mekhaniki – Advances of mechanics, 1985, Vol. 8, No. 3, pp. 85-107 (In Russian).

17. Ziglin S.L. On the absence of a complementary first integral in a special case of Suslov’s problem. Russian Mathematical Surveys, 1997, Vol. 52No. 2, pp.  434-436.

18. Ziglin S.L. On the absence of an additional first integral in one problem of the dynamics of a rigid body. Doklady Academii Nauk SSSR – Doklady Mathematics, 1987, Vol. 293, No. 4, pp. 804-807. (In Russian)

19. Ziglin S.L. On the absence of a real-analytic first integral for ABC flow when A=B. Chaos, 1998, Vol. 8, No. 1, pp. 272-273.

20. Ziglin S.L. The absence of an additional real-analytic first integral in some problems of dynamics. Functional Analysis and its applications, 1997Vol. 31No. 1, pp. 3-11.

 

For citation:

S. L. Ziglin. Self-intersection of complex asymptotic manifolds of hyperbolic equilibrium, position and non-existence of first integrals in the systems of the type of Hamiltonian with two degrees of freedom. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 5. Available at http://jre.cplire.ru/jre/may19/5/text.pdf

DOI  10.30898/1684-1719.2019.5.5