Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. ¹5
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.5.1

Investigation of Characteristics of Interferogram Visibility
in Three-Mirror Laser Interferometric rangefinder

 

I.S. Bulatov 1, N.A. Korobov 1, D.V. Aleksandrov 2, M.N. Dubrov 1,2

                                                                                                               

1 Moscow Institute of Physics and Technology
Institutskiy per. 9, Dolgoprudny, Moscow Region, Russia, 141701

2 Fryazino Branch of Kotelnikov Institute of Radio-Engineering and Electronics of RAS
Vvedenskiy sq. 1, Fryazino, Moscow Region, Russia, 141190

 

The paper was received April 29, 2022.

 

Abstract. Precision radio-optical methods for measuring large lengths and distances with interference accuracy are studied. The relations of the visibility of the interference pattern on the change in the length of the laser resonator are experimentally obtained and analyzed. The visibility relations from various values of the length of the measuring arm of a three-mirror interferometer are considered. These relations contain especial points, which are characterized by the ratio between the length of the laser resonator and the specified measured distance. The obtained relations are needed for optimal tuning of the laser frequency when implementing high-precision methods for measuring length and displacements. It is shown that by means of a three-mirror laser interferometer rangefinder operating in the regime of the two optical mode generation, the interference accuracy of measuring the length and small displacements at distances up to 100 km can be achieved.

Key words: laser, resonator, interferometer, rangefinder.

Financing: The work was carried out within the framework of the state task of IRE RAS.

Corresponding author: Dubrov Mstislav Nikolaevich, mnd139@ire216.msk.su

References

1. Takemoto S., Momose H., Araya A., Morii W., Akamatsu J., Ohashi M., Takamori A., Miyoki S., Uchiyama T., Tatsumi D., Higashi T., Telada S., Fukuda Y. A 100 m laser strainmeter system in the Kamioka Mine, Japan, for precise observations of tidal strains. Journal of Geodynamics. 2006. V.41. P.23-29. https://doi.org/10.1016/j.jog.2005.08.009

2. Nikolaev A.V., Lukanenkov A.V., Dubrov M.N. New Possibilities of Combined Data Processing from Recording of Displacements and Strains in the Field of Seismic Waves. Doklady Earth Sciences. Springer – Pleiades Publishing, Ltd. 2010. V.430. ¹2. P.258-260. https://doi.org/10.1134/S1028334X10020248

3. Dehne M., Guzman F., Sheard B., Heinzel G., Danzmann K. Laser interferometer for spaceborne mapping of the Earth's gravity field. Journal of Physics: Conference Series. 2009. V.154. P.012023. https://doi.org/10.1088/1742-6596/154/1/012023

4. Nardello M., Lintz M., C. Buy. Scattering paths in test optical bench for LISA mission. Frontiers in Optics 2020. OSA Technical Digest. Washington DC. United States. 2020. https://doi.org/10.1364/fio.2020.jtu1a.6

5.  Hechenblaikner G., Wand V., Kersten M., Danzmann K., Garcia A., Heinzel G., Nofrarias M., and Steier F. Digital laser frequency control and phase-stabilization loops in a high precision space-borne metrology system. IEEE Journal of Quantum Electronics. 2011. V.47. P.651-660. https://doi.org/10.1109/JQE.2011.2108637

6. Aleksandrov D.V., Dubrov M.N., Kravtsov V.V. Research on the Operation of the Controlled Laser Interferometers on Large Bases. Nelineynyy mir [Nonlinear world]. 2015. V.13. ¹2. P.5-6. https://www.elibrary.ru/item.asp?id=23413431 (In Russian)

7. Dubrov M.N. Laser Interferometers with Optical Feedback. IV Workshop and Exposition "Lazery i sovremennoye priborostroyeniye" ["Lasers and Modern Instrument Engineering"] (St. Petersburg. 30-31 Oct. 1995.) St. Petersburg. 1996. P.16-17. (In Russian)

8. Bosch T., Servagent N., Donati S. Optical feedback interferometry for sensing application. Optical Engineering. 2001. V.40. ¹1. P.20-27. https://doi.org/10.1117/1.1330701

9. Aleksandrov D.V., Dubrov M.N., Kravtsov V.V. Laser Interferometer Based on Frequency-Phase Modulation. Nelineynyy mir [Nonlinear world]. 2019. V.17. ¹1. P.5-7. https://doi.org/10.18127/j20700970-201901-01 (in Russian)

10. Minin Yu.B., Krupnik E.S., Dubrov M.N. Precision laser-interferometric meter of distances and displacements. Izvestiya vuzov. Priborostroyeniye. [Journal of Instrument Engineering]. 2018. V.61. ¹10. P.892-896. https://doi.org/10.17586/0021-3454-2018-61-10-892-896 (in Russian)

11. Aleksandrov D.V., Dubrov M.N., Shatrov A.D. Features of the operation of high-stability lasers after connection to an unmatched optical load. Journal of Communications Technology and Electronics. 2011. V.56. ¹ 9. P.1146-1149. https://doi.org/10.1134/S1064226911060027

12. Minin I., Bulatov I., Korobov N., Dubrov M., Fedorov M. Investigation of High-Precision Laser Instrument for Distance and Displacement Measurements. Frontiers in Optics + Laser Science 2021, C. Mazzali, T. Poon, R. Averitt, and R. Kaindl, eds. Technical Digest Series (Optica Publishing Group). Washington, DC, USA. 2021. https://doi.org/10.1364/FIO.2021.JTu1A.108

For citation:

Bulatov I.S., Korobov N.A., Aleksandrov D.V., Dubrov M.N. Investigation of characteristics of interferogram visibility in three-mirror laser interferometric rangefinder. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. ¹5. https://doi.org/10.30898/1684-1719.2022.5.1 (In Russian)