Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2022. 5
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2022.5.2

UDC: 537.877, 532.5.013

 

USING THE CONCEPT OF A GEOPHYSICAL MODEL FUNCTION

FOR THE INTERPRETATION SCATTEROMETER DATA

 

A.S. Zapevalov

 

Marine Hydrophysical Institute, Russian Academy of Sciences

2990112, Russia, Sevastopol, Kapitanskaya St., 2

 

The paper was received March 22, 2022.

 

Abstract. Within the framework of a two-scale Bragg (resonant) scattering model, the relationship between the spatial characteristics of sea surface waves and the geophysical model function (GMF) is analyzed. The dependence of the GMF on the angle between the direction of sounding and the wind velocity vector is determined by the function of the angular distribution of Bragg waves and the angular distribution of longer waves. In strong winds, the wave breaking makes a noticeable contribution to the radar signal. With calm and moderate winds, the main characteristics of the GMF can be interpreted within the framework of a two-scale Bragg scattering model. The exception is the appearance of negative values of the longitudinal-transverse asymmetry of GMF, which is observed in the L band of radio waves. Negative longitudinal-transverse asymmetry corresponds to lower values of the normalized cross-section of backscattering when probing along the wind direction than in the transverse direction.

Key words: remote sensing, sea surface, radio waves, geophysical model function, directional spreading function.

Financing: The work was carried out within the framework of the state task on the topic No. 0555-2021-0003 "Development of operational oceanology methods based on interdisciplinary studies of the processes of formation and evolution of the marine environment and mathematical modeling involving remote and contact measurement data".

Corresponding author: Zapevalov Alexander Sergeevich, sevzepter@mail.ru

References

1. Moore R.K., Pierson W.J. Measuring sea state and estimating surface winds from a polar orbiting satellite. Proc. Inter. Symp. Electromagnetic Sensing of the Earth from Satellites. Miami Beach, FL. 1966. P.R1-R28.

2. Moore R.K., Claassen J.P., Cook A.C., Fayman D.L., Holtzman J.C., Sobti A., Ulaby F.T., Young J.D., Hatcher N.M., Spencer W.J. Simultaneous active and passive microwave response of the Earth – the Skylab radar experiment. Proc. 9th Int. Symp. on Rem. Sens. of Envir. Ann. Arbor, MI: University of Michigan. 1974. P.189-217.

3. Stoffelen A.C.M., Anderson D.L.T. Scatterometer data interpretation: Measurement space and inversion. J. Atmos. Oceanic Technol. 1997. V.14. P.1298-1313.

4. Hersbach H., Stoffelen A., de Haan, S. An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geoph. Res. 2007. V.112. https://doi.org/10.1029/2006jc003743

5. Zhou X., Chong J.S., Yang X.F., Li W., Guo X.X. Ocean surface wind retrieval using SMAP L-band SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017. V.10. P.65-74.

6. Isoguchi O., Shimada M. An L-Band Ocean Geophysical Model Function Derived From PALSAR. IEEE Trans Geosci Remote Sens, 2009. V.47. №7. P.1925-1936. https://doi.org/10.1109/tgrs.2008.2010864

7. Hwang P.A., Burrage D.M., Wang D.W., Wesson J.C. Ocean Surface Roughness Spectrum in High Wind Condition for Microwave Backscatter and Emission Computations. J. Atmos. Oceanic Technol. 2013. V.30. №9. P.2168-2188. https://doi.org/10.1175/jtech-d-12-00239.1

8. Zhou X., Chong J., Bi H., Yu X., Shi Y., Ye X. Directional spreading function of the gravity-capillary wave spectrum derived from radar observations. Remote Sensing. 2017. V.9. №4. P.361. https://doi.org/10.3390/rs9040361

9. Phillips O.M. Radar returns from the sea surface - Bragg scattering and breaking waves. J. Physical Oceanography. 1988. V.18. P.1063-1074. https://doi.org/10.1175/1520-0485(1988)018<1065:RRFTSS>2.0.CO;2

10. Hwang P.A., Fois F. Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering. J. Geoph. Res: Oceans. 2015. V.120. P.3640-3657. https://doi.org/10.1002/2015JC010782

11. Kudryavtsev V.N., Fan S., Zhang B., Mouche A.A., B. Chapron B. On quad-polarized SAR measurements of the ocean surface. IEEE Trans Geosci Remote Sens. 2019. V.57. №11. P.8362-8370.

https://doi.org/10.1109/TGRS.2019.2920750

12. Zhang B., Zhao X., Perrie W., W.Kudryavtsev V. On quad-polarized SAR measurements of the ocean surface. J. Geoph. Res: Oceans. 2020. https://doi.org/10.1029/2020JC016319

13. Moore R.K., Pierson W.J. Measuring sea state and estimating surface winds from a polar orbiting satellite. Proc. Inter. Symp. Electromagnetic Sensing of the Earth from Satellites, Miami Beach, FL. 1966. P.R1-R28.

14. Khristoforov G.N., Zapevalov A.S., Smolov V.E. On the limiting accuracy of satellite scatterometer estimates of wind-speed over the ocean. Soviet Journal of Remote Sensing. 1987. V.7. №2. P.287-300.

15. Danilychev M.V., Kravchenko V.F., Kutuza B.G., Churikov D.V. Satellite microwave radiometric systems for earth remote sensing. Current state and development trends. Fizicheskie osnovy priborostroeniya [Physical fundamentals of instrumentation]. 2014. V.3. №1. P.3-25. (In Russian)

16. Yueh S.H., Tang W., Fore A.G., Hayashi A.K., Song Y.T., Lagerloef G. Aquarius geophysical model function and combined active passive algorithm for ocean surface salinity and wind retrieval. J. Geophys. Res. Oceans. 2014. V.119. №8. P.5360-5379.

17. Kudryavtsev V.N., Hauser D., Caudal G., Chapron B.A. A semi-empirical model of the normalized radar cross-section of the sea surface. 1 Background model. J. Geophys. Res. 2003. V.108. P.8055.

18. Bass F.G., Braude S.Ya., Kalmykov A.I., Men A.V., Ostrovskii I.Y., Pustovoitenko V.V., Rozenberg A.D., Fuks I.M. Radar methods for the study of ocean waves (Radiooceanography). Sov.Phys.Usp. 1975. V.18 P.641-642. https://doi.org/10.1070/PU1975v018n08ABEH004920

19. Bulatov M.G., Raev M.D., Skvortsov E.I. Counter waves on the sea surface (results of natural microwave experiment). Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern problems of remote sensing of the Earth from space]. 2008. V.5. 2. P.42-48. (In Russian)

20. Donelan M.A., Hamilton J., Hui W.H. Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. 1985. V.315. P.509-562.

21. Elfouhaily T., Chapron B., Katsaros K., Vandemark D. A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res. 1997. V.102. P.15781-15796.

22. Thompson D., Elfouhaily T., Chapron B. Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles. Geoscience and Remote Sensing Symposium Proceedings. 1998. IGARSS '98. P.1671-1673. https://doi.org/10.1109/IGARSS.1998.692411

23. Zapevalov A., Pokazeev K., Chaplina T. Effect of long surface waves on the bragg scattering of microwave Simulation of the Sea Surface for Remote Sensing. Springer, Cham. 2021. P.97-115. https://doi.org/10.1007/978-3-030-58752-9_5

24. Valenzuela G. Theories for the interaction of electromagnetic and ocean waves. - A review. Bound. Layer Meteorol. 1978. V.13. №1-4. P.61-85.

25. Hwang P.A., Zhang B., Toporkov J.V., Perrie W. Comparison of composite Bragg theory and quad-polarization radar backscatter from RADARSAT-2: With applications to wave breaking and high wind retrieval. J. Geoph. Res: Oceans. 2010. V.115. https://doi.org/10.1029/2009JC005995

26. Bass F.G., Fuks I.M. Wave scattering by statistically rough surface. Pergamon, 1979. 540 p.

27. Wu S.T., Fung A.K. A noncoherent model for microwave emissions and backscattering from sea surface. J. Geophys. Res. 1972. V.77. 30. P.5917-5929.

28. Karaev V.Yu., Kanevsky M.B., Meshkov E.M., Titov V.I., Balandina G.N. Measurement of the variance of water surface slopes by a radar: verification of algorithms. Radiophysics and Quantum Electronics. 2008. V.51. №5. P.360-371. https://doi.org/10.1007/s11141-008-9042-6

29. Aprausheva N.N., Sorokin S.V. Exact equation of the boundary of unimodal and bimodal domains of a two-component Gaussian mixture. Pattern Recognition and Image Analysis. 2013. V.23. 3 P.341-347.

30. Zapevalov A.S., Ratner Yu.B. Analytic model of the probability density of slopes of the sea surface. Physical Oceanography. 2003. V.13. 1. P.1-13. https://doi.org/10.1023/A:1022444703787

31. Cox C., Munk W. Measurements of the roughness of the sea surface from photographs of the sun glitter. J. Optical. Soc. America. 1954. V.44. №11.
P.838-850.

32. Yueh S.H., Tang W., Fore A.G., Neumann G., Hayashi A., Freedman A., Chaubell J., Lagerloef G.S.E. L-Band Passive and Active Microwave Geophysical Model Functions of Ocean Surface Winds and Applications to Aquarius Retrieval. IEEE Trans Geosci Remote Sens. 2013. V.51. №9. P.4619-4632. https://doi.org/10.1109/tgrs.2013.2266915

33. Longuet-Higgins, M.S. The statistical analysis of a random, moving surface. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1957. V.249(966). P.321-387. https://doi.org/10.1098/rsta.1957.0002

34. Zapevalov A.S. Distribution of variance of sea surface slopes by spatial wave range. Sovremennyye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa [Modern problems of remote sensing of the Earth from space.] [online]. 2020. V.17. 1. P.211-219. https://doi.org/10.21046/2070-7401-2020-17-1-211-219 (In Russian)

35. Longuett-Higgins M.S., Cartwrighte D.E., Smith N.D. Observation of the directional spectrum of sea waves using the motions of the floating buoy. Pro. Conf. Ocean Wave Spectra. Englewood Cliffs. N. Y.: Prentice Hall, 1963. P.111-132.

36. Bréon F.M., Henriot N. Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions. J. Geoph. Res.: Oceans. 2006. V.111. C06005. https://doi.org/10.1029/2005JC003343

37. Apel J.R. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter. J. Geoph. Research. 1994. V.99. C8. P.16269-16291.

38. Zapevalov A.S. Statistical characteristics of the moduli of slopes of the sea surface. Physical Oceanography. 2002. Т.12. 1. P.24-31. https://doi.org/10.1023/A:1014672614293

39. Wu J. Mean square slopes of the wind-disturbed water surface, their magnitude, directionality, and composition. Radio Sci. 1990. V.25. P.37-48.

For citation:

Zapevalov A.S. Using the concept of a geophysical model function for the interpretation scatterometer data. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2022. №5. https://doi.org/10.30898/1684-1719.2022.5.2 (In Russian)