Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2023. №5
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2023.5.9
THE CONCEPT OF A TWO-CHANNEL INFRARED LIDAR FOR MONITORING GREENHOUSE GASES IN THE SURFACE LAYER OF THE ATMOSPHERE
S.V. Yakovlev, S.A. Sadovnikov, N.S. Kravtsova
V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 1, Academician Zuev square
The paper was received March 14, 2023.
Abstract. The results of calculating the atmospheric transmission spectrum and modeling lidar signals in the informative range of greenhouse gases (CO2, H2O) sounding on horizontal tropospheric paths using the two-channel infrared lidar system under development are presented. It is shown that the spectral range of operation of the lidar system 4878–4894 cm-1 (2043–2050 nm) is preferable for simultaneous probing of CO2 and H2O. In this range, the level of lidar signals lies in the range of 10–6–10–10 W and exceeds the equivalent power photodetector noise. Based on the results of the calculations, the technical appearance of the developed two-channel infrared lidar system was determined.
Key words: lidar, atmosphere, greenhouse gases, infrared region.
Financing: The study was supported by the Russian Science Foundation grant No. 22-79-10203, https://rscf.ru/en/project/22-79-10203/
Corresponding author: Yakovlev Semyon Vladimirovich, ysv@iao.ru
References
1. Bobrovnikov S.M., Matvienko G.G., Romanovskii O.A., Serikov I.B., Sukhanov A.Ya. Lidarnyi spektroskopicheskii gazoanaliz atmosfery [Lidar spectroscopic gas analysis of the atmosphere]. Tomsk, Institute of Atmospheric Optics Publ. 2014. 508 p. (In Russian)
2. Grigorievsky V.I., Sadovnikov V.P., Elbakidze A.V. Measurements of the background methane concentration with a remote lidar on kilometer routes in the Moscow region. Zhurnal Radioelektroniki [Journal of Radio Electronics] [online]. 2021. №9. https://doi.org/10.30898/1684-1719.2021.9.10 (In Russian)
3. Platt U., Stutz J. Differential optical absorption spectroscopy. Berlin, Springer-Verlag. 2008. 597 p.
4. Measures R.M. Laser Remote Sensing Fundamentals and Applications. Hoboken/New Jersey, John Wiley &Sons. 1984. 510 p.
5. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcislo P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Cane E., Csaszar A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.–M., Horneman V.–M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia–Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Muller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tobias R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 Molecular Spectroscopic Database. Journal of Quantitative Spectroscopy and Radiative Transfer. 2022. V.277. №107949. P.1-82. https://doi.org/10.1016/j.jqsrt.2021.107949
For citation:
Yakovlev S.V., Sadovnikov S.A., Kravtsova N.S. The concept of a two-channel infrared lidar for monitoring greenhouse gases in the surface layer of the atmosphere. Zhurnal radioelektroniki [Journal of Radio Electronics] [online]. 2023. №5. https://doi.org/10.30898/1684-1719.2023.5.9 (In Russian)