Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹5

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.5.11

 

 

PARTICLE-IN-CELLS SIMULATION OF THE DYNAMICS

OF COUPLED GYROTRONS

 

Ginzburg N.S., Zotova I.V., Rozental R.M., Sergeev A.S.

 

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of RAS

603950, Russia, Nizhny Novgorod, Ul'yanova St., 46

 

The paper was received February 20, 2024.

 

Abstract. The problem of mutual synchronization of two coupled gyrotrons in the 170 GHz waveband was simulated using the particle-in-cells method. To reduce the calculation time, an approach based on replacing the asymmetric operating mode with an equivalent axisymmetric mode was used. As a result, the dimension of the problem is reduced, and instead of three-dimensional modeling, 2.5-dimensional modeling can be used. The limiting case is considered when the lowest axisymmetric mode of the circular waveguide TE01 is chosen as the equivalent mode. The results obtained are demonstrated to be in good agreement with the traditional approach based on modeling of averaged equations.

Key words: gyrotron, coupled oscillators, particle-in-cells simulation.

Financing: The work is supported by the RSF project ¹19-79-30071.

Corresponding author: Rozental Roman Markovich, rrz@ipfran.ru

 

 

References

1. Ilyakov E.V., Kulagin I.S., Nechaev V.E. Experimental study of a saturated multipactor in crossed fields // Radiophys Quantum El. – 2009. – V.  52. – P. 885–891. – DOI: 10.1007/s11141-010-9196-x.

2. Sazontov A.G., Nechaev V.E., Vdovicheva N.K. Statistical prediction of microwave window breakdown: effects of RF magnetic field // IEEE Trans. Plasma Sci. – 2012. – V. 40. – No. 2. – P. 451-462. – DOI: 10.1109/TPS.2011.2176147.

3. González-Iglesias D., Monerris Belda O., Díaz M. E., et al. Experimental Analysis of the Multipactor Effect With RF Pulsed Signals // IEEE Electron Device Letters. 2015. – V. 36. – No. 10. – P. 1085-1087. – DOI: 10.1109/LED.2015.2468068.

4. D. Wang et al. Pulse Lengthening of the Microwave Generated by TM₀₂ Mode Ka-Band RBWO Operating With Low Guiding Magnetic Field // IEEE Transactions on Electron Devices. – 2021. – V. 68. – No. 6. – P. 3015-3020. – DOI: 10.1109/TED.2021.3074114.

5. Xiao R. et al. Microwave breakdown in an overmoded relativistic backward wave oscillator operating at low magnetic field // Plasma Res. Express. – 2021. – V. 3. – Art.no. 025001. – DOI: 10.1088/2516-1067/abf6b0

6. Iqbal A. et al. Recent advances in multipactor physics and mitigation // High Voltage. – 2023. – V. 8. – No. 6. – P. 1–20. – DOI: 10.1049/hve2.12335

7. Herd J.S., Conway M.D. The Evolution to Modern Phased Array Architectures // Proceedings of the IEEE. – 2016. – V. 104. – No. 3. – P. 519-529. – DOI: 10.1109/JPROC.2015.249487

8. Liu Z. et al. Coherent Combination of Power in Space With Two X-Band Gigawatt Coaxial Multi-Beam Relativistic Klystron Amplifiers // IEEE Electron Device Letters. – 2022. – V. 43. – No. 2. – P. 284-287. – DOI: 10.1109/LED.2021.3137927.

9.  Bakunin V.L., Guznov Y.M., Denisov G.G. et al. An Experimental Study of the External-Signal Influence on the Oscillation Regime of a Megawatt Gyrotron // Radiophys Quantum El. – 2019. – V. 62. – P. 481–489. – DOI: 10.1007/s11141-020-09994-y.

10. Sharypov K.A., Shunailov S.A., Ginzburg N.S. et al. Development of the Concept of High-Power Microwave Oscillators with Phase Locking by an External Signal // Radiophys Quantum El. – 2019. – V. 62. – P. 447–454. – DOI: 10.1007/s11141-020-09990-2.

11. Abubakirov E.B., Rozental R.M., Tarakanov V.P. Comparison of Efficiencies of External Signal Supply Circuits in a Relativistic Backward-Wave Tube with Resonant Reflector // J. Commun. Technol. Electron. – 2019. – V. 64. – P. 59–63. – DOI: 10.1134/S1064226919010017.

12. Ginzburg N.S., Cross A.W., Golovanov A.A. et al. Coherent Summation of Emission From Relativistic Cherenkov Sources as a Way of Production of Extremely High-Intensity Microwave Pulses // IEEE Trans. Plasma Sci. – 2016. – V. 44. – No. 4. – P. 377-385. – DOI: 10.1109/TPS.2016.2517670

13. Goikhman M.B., Gromov A.V., Kovalev N.F., Palitsin A.V. Summation of wave beams of short microwave pulses // Journal Electromagnetic Waves and Electronic Systems. – 2018. –No.  6. – P. 46-50. – DOI: 10.18127/j15604128-201806-08

14. Zhang Y. et al. Microwave Power System Based on a Combination of Two Magnetrons // IEEE Transactions on Electron Devices. – 2017. – V. 64. – No. 10. – P. 4272-4278. – DOI: 10.1109/TED.2017.2737555.

15. Song M. et al. Particle-in-Cell Simulations on High-Efficiency Phase-Locking Millimeter-Wave Magnetrons with Unsynchronized High-Voltage Pulses // Electronics. – 2023. – V. 12. – Art. no. 3502. – DOI: 10.3390/electronics12163502.

16. Adilova A.B., Ryskin N.M. Theory of Peer-to-Peer Locking of High-Power Gyrotron Oscillators Coupled with Delay // Electronics. – 2022. – V. 11. – Art. no. 811. – DOI: 10.3390/electronics11050811

17. Novozhilova Yu.V., Bogdashov A.A., Glyavin M.Yu. et al. Studying the possibility of frequency stabilization of two gyrotrons under the influence of reflection from an external high-Q resonator // Journal of Radio Electronics. – 2023. – ¹. 11. – DOI: 10.30898/1684-1719.2023.11.23 (In Russian).

18. Thumm M.K.A. et al. High-power gyrotrons for electron cyclotron heating and current drive // Nucl. Fusion. – 2019. – V. 59. – No. 7. – Art. no. 073001. – DOI: 10.1088/1741-4326/ab2005

19. Pikovsky A., Rosenblum M., Kurths J. Synchronization: A Universal Concept in Nonlinear Sciences. – Cambridge University Press, 2001.

20. Demyanchenko A.G. Synchronization of harmonic oscillators. – Moscow, "Energy", 1976 (In Russian).

21. Usacheva S. A., Ryskin N. M. Phase locking of two limit cycle oscillators with delay coupling // Chaos. – 2014. – V. 24. – No. 2. – Art. no. 023123. – DOI: 10.1063/1.4881837

22. Ginzburg N. S., Sergeev A. S., Zotova I. V. Time-domain self-consistent theory of frequency-locking regimes in gyrotrons with low-Q resonators // Phys. Plasmas. – 2015. – V. 22. – No. 3. – Art. no. 033101. – DOI: 10.1063/1.4913672.

23. Yakunina K. A., Kuznetsov A. P., Ryskin N. M. Injection locking of an electronic maser in the hard excitation mode // Phys. Plasmas. – 2015. – V. 22. – No. 11. –  Art. no. 113107. – DOI: 10.1063/1.4935847.

24. Bakunin V.L., Denisov G.G., Novozhilova Y.V. Phase Locking of a Gyrotron with Low-Frequency Voltage and Current Fluctuations by an External Monochromatic Signal // Radiophys Quantum El. – 2020.  V. 63. – P. 392–402. – DOI: 10.1007/s11141-021-10064-0.

25. Glyavin M.Y., Denisov G.G., Kulygin M.L. et al. Gyrotron Frequency Stabilization by a Weak Reflected Wave // Radiophys Quantum El. – 2016. – V. 58. – P. 673–683. – DOI: 10.1007/s11141-016-9639-0.

26. Zotova I. V., Denisov G. G., Ginzburg N. S., Sergeev A. S., Rozental R. M. Time-domain theory of low-Q gyrotrons with frequency-dependent reflections of output radiation // Phys. Plasmas. – 2018. – V. 25. – No. 1. – Art. no. 013104. – DOI: 10.1063/1.5008666.

27. Novozhilova Yu.V., Denisov G.G., Glyavin M.Yu. et al. Gyrotron frequency stabilization under the influence of external monochromatic signal or wave reflected from the load: Review // Izvestiya VUZ. Applied Nonlinear Dynamics. – 2017. – Vol. 25. – No. 1. – P. 4–34. – DOI: 10.18500/0869-6632-2017-25-1-4-34 (In Russian)

28. Melnikova M. M., Tyshkun A. V., Ryskin N. M. Theoretical Analysis of Frequency Stabilization and Pulling Effects in a Gyrotron with Delayed Reflection // J Infrared Milli Terahz Waves. – 2021. – V.  42. – No. 4. – P. 446-461. – DOI: 10.1007/s10762-021-00768-9.

29. Rozental R. M., Ginzburg N. S., Glyavin M. Yu., Sergeev A. S., Zotova I. V. Mutual synchronization of weakly coupled gyrotrons // Phys. Plasmas. – 2015. – V.  22. – No. 9. – Art. no. 093118. – DOI: 10.1063/1.4931746.

30. Adilova A.B., Ryskin N.M. Influence of the Delay on Mutual Synchronization of Two Coupled Gyrotrons // Radiophys Quantum El. – 2021. – V. 63. – P. 703–715. – DOI: 10.1007/s11141-021-10091-x.

31. Rozental R.M., Zotova I.V., Glyavin M.Y. et al. Widening of the Frequency Tuning Bandwidth in a Subterahertz Gyrotron with an External Bragg Reflector // Radiophys Quantum El. – 2020. – V. 63. – P. 363–370. – DOI: 10.1007/s11141-021-10061-3.

32. Glyavin M.Y., Fedotov A.E., Zotova I.V. et al. Experimental Demonstration of the Possibility to Expand the Band of Smooth Tuning of Frequency Generation in Short-Cavity Gyrotrons // Radiophys Quantum El. – 2019. – V. 61. – P. 797–800. – DOI: 10.1007/s11141-019-09937-2.

33. Rozental R. M., Tarakanov V. P. Potential for Acceleration of Simulation of Dynamic Processes in Oversized Gyrotrons by Means of Using 2.5 D Particle-in-Cell Method // Journal of Infrared, Millimeter, and Terahertz Waves. – 2022. – V. 43. – No. 5-6. – P. 479-492. – DOI: 10.1007/s10762-022-00862-6

34. Rozental R.M., Tai E.M., Tarakanov V.P., Fokin A.P. Using the 2.5-Dimensional PIC Code for Simulating Gyrotrons with Nonsymmetric Operating Modes // Radiophys Quantum El. – 2022. – V. 65. – P. 384–396. – DOI: 10.1007/s11141-023-10221-7.

35. R. M. Rozental, N. I. Zaitsev, I. S. Kulagin, E. V. Ilyakov and N. S. Ginzburg.  Nonstationary processes in an X-band relativistic gyrotron with delayed feedback // IEEE Trans. Plasma Sci. – 2004. – V.  32. – No. 2. – P. 418-421. – DOI: 10.1109/TPS.2004.829831.

36. Bogdashov A.A., Glyavin M.Y., Rozental R.M. et al. Narrowing of the Emission Spectrum of a Gyrotron with External Reflections // Tech. Phys. Lett. – 2018. – V. 44. – P. 221–224. – DOI: 10.1134/S1063785018030069.

37. Glyavin M. Yu., Ogawa I., Zotova I. V. et al. Frequency Stabilization in a Sub-Terahertz Gyrotron With Delayed Reflections of Output Radiation // IEEE Transactions on Plasma Science. – 2018. – V.  46. – No. 7. – P. 2465-2469. – DOI: 10.1109/TPS.2018.2797480.

38. Myasnikov V.E., Agapova M.V., Kuftin A.N. et al. Progress of 1.5–1.7 MW/170 GHz gyrotron development // 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). 2013. P. 1-2. DOI: 10.1109/IRMMW-THz.2013.6665557

39. Kuftin A.N., Fokin A.P., Rozental R.M. Simulations of the Experimental Spectral Features of Megawatt-Class Gyrotron Fed With an External Signal //  IEEE Transactions on Electron Devices. – 2024. – V. 71. – DOI: 10.1109/TED.2024.3390655.

40. Tarakanov V.P.  Code KARAT in simulations of power microwave sources including Cherenkov plasma devices, vircators, orotron, E-field sensor, calorimeter etc. // EPJ Web Conf. – 2017. – V. 149. – Art. no. 04024. – DOI: 10.1051/epjconf/201714904024

41.  Ginzburg N.S., Sergeev A.S., Zotova I.V., Zheleznov I.V. Time-domain theory of gyrotron traveling wave amplifiers operating at grazing incidence // Phys. Plasmas. – 2015. – Vol. 22. – Art. no. 013112. – DOI: 10.1063/1.4906364

42. Ginzburg N.S., Zavol'skii N.A., Nusinovich G.S., Sergeev A.S. Self-oscillation in UHF generators with diffraction radiation output // Radiophys Quantum Electron. – 1986. – V. 29. – P. 89–97. – DOI: 10.1007/BF01034008.

 

For citation:

Ginzburg N.S., Zotova I.V., Rozental R.M., Sergeev A.S. Particle-in-cells simulation of the dynamics of coupled gyrotrons. // Journal of Radio Electronics. – 2024. – ¹. 5. https://doi.org/10.30898/1684-1719.2024.5.11 (In Russian)