

DOI: https://doi.org/10.30898/1684-1719.2024.5.4 УДК: 621.372.852.1

РАСЧЕТ ВОЛНОВОДНОГО ФИЛЬТРА ДЛЯ ВЫДЕЛЕНИЯ ИЗЛУЧЕНИЯ ТРЕТЬЕЙ ГАРМОНИКИ ЦИКЛОТРОННОЙ ЧАСТОТЫ СИЛЬНОТОЧНОГО ГИРОТРОНА КА-ДИАПАЗОНА

Леонтьев А.Н.¹, Минеев К.В.¹, Розенталь Р.М.^{1,2}

¹ ФИЦ Институт прикладной физики им. А.В. Гапонова-Грехова РАН, 603950, Нижний Новгород, ул. Ульянова, 46

² Национальный исследовательский Нижегородский государственный университет имени Н.И. Лобачевского, 603022, г.Нижний Новгород, пр.Гагарина, 23

Статья поступила в редакцию 22 марта 2024 г.

Аннотация. Выполнен расчет модового фильтра круглого волновода, предназначенного для выделения ТЕ моды высокого порядка, согласованного обоснование С ee полем. Приводится теоретическое И результаты электродинамического моделирования примере на выделения моды третьей гармоники гиротрона TE_{12.4} на фоне преобладающего излучения на основной циклотронной гармонике на моде ТЕ_{4.2}.

Ключевые слова: гиротрон, миллиметровое излучение, волноводный фильтр. Финансирование: Работа выполнена при поддержке Российского научного фонда, грант №23-12-00161.

Автор для переписки: Минеев Кирилл Владимирович, mineevkv@ipfran.ru

Введение

B связи с активным освоением терагерцового диапазона частот разработке В настоящее время значительное внимание уделяется электровакуумных импульсных источников терагерцового излучения большой мощности. Подобное быть излучение может использовано исследования процессов разряда в газах [1], например, для создания ДЛЯ источников ультрафиолетового излучения [2]. В работах [3,4] было показано, что одним из возможных вариантов создания таких источников является использование эффекта умножения частоты в сильноточных гиротронах. Следует отметить, что до последнего времени регистрация излучения гиротронах в режиме умножения частоты осуществлялась В только слаборелятивистских гиротронах [5-7]. Мощность излучения при этом В не превышала 100 мВт [8], что обусловлено быстрым спаданием коэффициентов связи электронного пучка с рабочей волной по мере увеличения номера гармоники. В то же время хорошо известно, что степень спадания коэффициентов связи на гармониках уменьшается с увеличением энергии электронов [9]. В результате в релятивистской области энергий становится возможным достижение заметных значений коэффициента нелинейной трансформации, равного отношению мощности излучения на высоких гармониках к мощности излучения на первой гармонике.

В недавней работе [10] были выполнены первые эксперименты по исследованию релятивистского сильноточного гиротрона диапазона 35 ГГц с расчетной выходной мощностью около 200 МВт. Согласно результатам моделирования, максимальная мощность излучения на третьей гармонике в диапазоне 105 ГГц может достигать уровня 1 МВт. В этой связи одной из актуальных задач является разработка волноводного фильтра, который обеспечивал бы выделение на уровне не менее 30 дБ высокочастотной компоненты излучения на фоне основной низкочастотной. В данной работе представлено теоретическое обоснование и результаты расчета

2

оптимальных параметров данного фильтра, а также приводятся результаты его электродинамического моделирования.

1. Теоретическое обоснование

Электрические (ТМ) и магнитные (ТЕ) волны круглого металлического волновода удовлетворяют двумерному волновому уравнению [11], которое в цилиндрической системе координат имеет вид:

$$\frac{\partial^2 \Pi}{r^2} + \frac{1}{r} \frac{\partial \Pi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Pi}{\partial \phi^2} + g^2 \Pi = 0, \qquad (1)$$

где Π – соответствующий электрический Π^{e} и Π^{m} магнитный векторы Герца, *g* – поперечное волновое число, *r* и φ – радиальная и азимутальная координаты.

Для интересующих нас магнитных TE_{mn} волн решением уравнения (1) будут являться два независимых выражения:

$$\Pi^{m} = CJ_{m}(gr)\sin(m\phi)$$
или $\Pi^{m} = CJ_{m}(gr)\cos(m\phi),$ (2)

где C – постоянный коэффициент, зависящий от внешних условий (например, от мощности сигнала возбуждения), m – порядок функции Бесселя $J_m(gr)$, зависящий от числа вариаций поля TE_{mn} моды по азимутальной координате.

Эквивалентность решений (2) создает неопределенность в азимутальной ориентации собственных волн круглого волновода, ИНЫМИ словами, имеют место две равнозначные моды, отличающиеся только поворотом на угол $\alpha = 90^{\circ}/m$. Этот эффект называется поляризационным вырождением может проявляться во многих волноводных структурах, И имеющих в поперечном сечении правильный многоугольник. В общем случае при суперпозиции обоих решений может наблюдаться структура, вращающаяся относительно продольной оси z, являющаяся аналогом круговой поляризации однородной Т-волны [12].

Граничным условием для П^{*m*} является:

$$\frac{\partial \Pi^m}{\partial r} = 0$$
 при $r = R_0$, (3)

где R_0 – внутренний радиус круглого волновода.

Тогда поперечное волновое число *g* определяется из условия равенства нулю производной функции Бесселя:

$$J'_{m}(gr) = \frac{\partial J_{m}}{\partial r} = 0.$$
⁽⁴⁾

Обозначим через μ_{mn} *n*-ый положительный корень уравнения $J'_m(\mu_{mn}) = 0$, тогда:

$$g = \frac{\mu_{mn}}{R_0}.$$
 (5)

Компоненты электрического (*E*) и магнитного (*H*) полей магнитной волны TE_{mn} могут быть получены через вектор Герца Π^m следующим образом:

$$E_{r} = \frac{ik}{r} \frac{\partial \Pi^{m}}{\partial \phi}, \quad E_{\phi} = -ik \frac{\partial \Pi^{m}}{\partial r}, \quad E_{z} = 0,$$

$$H_{r} = \frac{\partial^{2} \Pi^{m}}{\partial r \partial \phi}, \quad H_{\phi} = \frac{1}{r} \frac{\partial^{2} \Pi^{m}}{\partial \phi \partial r}, \quad H_{z} = \frac{\partial^{2} \Pi^{m}}{\partial z^{2}} + k^{2} \Pi^{m},$$
(6)

где *k* – волновое число.

Рассмотрим далее две моды круглого волновода – $TE_{4,2}$ и $TE_{12,4}$, на которых происходит излучение на первой и третьей циклотронной гармониках в сильноточном релятивистском гиротроне [4]. На рисунке 1 построено распределение модуля вектора электрического поля *E* в поперечном сечении для мод $TE_{4,2}$ ($\mu_{4,2} = 9.2824$) и $TE_{12,4}$ ($\mu_{12,4} = 26.246$), пересчитанное в декартовую систему координат по формуле:

$$E(x, y) = \sqrt{E_r^2(r_{x,y}, \phi_{x,y}) + E_{\phi}^2(r_{x,y}, \phi_{x,y})},$$
(7)

где
$$r_{x,y} = \sqrt{x^2 + y^2}$$
, $\phi_{x,y} = arctg(y/x)$.

Для выделения моды TE_{12,4} на фоне TE_{4,2} предлагается синтезировать TE_{12.4}. Наиболее модовый фильтр, согласованный с полем моды предпочтительным вариантом, с точки зрения обеспечения согласования и технологичности изготовления, является концентрически перфорированный металлический диск, диаметры отверстий (диафрагм) которого соответствуют форме локальных максимумов моды ТЕ_{12.4}. Принцип действия фильтра основан на выделении волны *N*-й гармоники с частотой *Nf*₀ с помощью одномодовых круглых диафрагм, служащих закритическими волноводами для первой гармоники с частотой f_0 , когда ее продольное волновое число

$$h = \sqrt{k^2 - g^2} \tag{8}$$

становится чисто мнимым, в то время как на кратной гармонике h > 0 и распространяющаяся волна на частоте Nf_0 переносит активную мощность вдоль оси *z* в каждой диафрагме.

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №5, 2024</u>

Критические длины магнитных ТЕ волн в круглом волноводе определяются по формуле:

$$\lambda_c = \frac{2\pi}{g} = \frac{2\pi R_0}{\mu_{mn}}.$$
(9)

Для электрических ТМ волн в выражении (9) необходимо заменить μ_{mn} на соответствующий положительный корень v_{mn} уравнения $J_m(v_{mn}) = 0$.

Основной (низшей) модой в круглом волноводе является мода $TE_{1,1}$ ($\mu_{1,1} = 1.8412$), а следующей за ней – $TM_{0,1}$ ($v_{0,1} = 2.4048$), поэтому радиус каждой *i*-й диафрагмы R_i должен находиться в пределах:

$$R_{\min} = 1.05 \cdot \frac{\mu_{1,1}}{2\pi\lambda} \le R_i < R_{\max} = \frac{\nu_{0,1}}{2\pi\lambda},$$
 (10)

где $\lambda = Nf_0/c$ – длина волны, а *c* – скорость света в свободном пространстве. Допуск 5 % на R_{\min} исключает работу, во-первых, в закритической области, а, во-вторых, в зоне большого затухания вблизи критической частоты. Допуском для R_{\max} можно пренебречь в силу сложности эффективного возбуждения моды $TM_{0,1}$ электрическим полем, близким по своей структуре к основной моде $TE_{1,1}$ в области диафрагмы.

Количество концентрических уровней диафрагм должно быть равно 2n-1, и для эффективного возбуждения моды $TE_{1,1}$ положения L_i их центров определяются из условия:

$$\frac{\partial E(L_i, \phi_i)}{\partial r} = 0, \tag{11}$$

где для нечетных индексов i = 1, 3... 2n - 1: $\phi_i = 0$, для четных i = 2, 4... 2(n - 1): $\phi_i = \pm \theta$, а угол $\theta = \pi/2m$. Таким образом, максимум распределения поля по диафрагме должен попадать строго в ее центр.

Зададим максимально возможный начальный радиус первой диафрагмы (здесь и далее обозначения по тексту соответствуют рисунку 2а):

$$R_1 = L_1 \sin \theta \,. \tag{12}$$

Проведем отрезок $L_{1,2}$ от точки 1 к 2 и выразим его длину по формуле:

$$L_{i,i+1} = \sqrt{L_i^2 + L_{i+1}^2 - 2L_i L_{i+1} \cos \theta} .$$
 (13)

В продолжение отрезка $L_{1,2}$ направим локальную координатную ось ξ_1 (рисунок 2б) и найдем распределение амплитуды поля *E* как функцию от ξ :

$$E(\xi_i) = E(r(\xi_i), \phi(\xi_i)) \text{ при } \xi_i \in [0; L_{i,i+1}].$$
(14)

В определении (14) координаты выражаются следующим образом:

$$\phi(\xi_{i}) = \begin{cases} \arccos\left(\frac{\xi_{i}}{r(\xi_{i})}\sin\psi_{i}\right), & i = 1, 3 \dots 2n - 1; \\ \theta - \arcsin\left(\frac{\xi_{i}}{r(\xi_{i})}\sin\psi_{i}\right), & i = 2, 4 \dots 2(n - 1). \end{cases}$$
(15)
$$r(\xi_{i}) = \sqrt{L_{i}^{2} + \xi_{i}^{2} - 2\xi_{i}L_{i}\cos\psi_{i}},$$

где:

$$\psi_i = \pi - \arcsin\left(\frac{L_{i+1}}{L_{i,i+1}}\sin\theta\right). \tag{16}$$

Рис. 2. Эскиз фильтра.

На чертеже (а) жирным выделен элементарный сектор, на (б) – добавлены вспомогательные оси, поясняющие процедуру расчета.

На рисунке 3 приведено распределение модуля амплитуды поля E вдоль ξ , рассчитанное для моды $TE_{12,4}$. Точка σ_i , соответствующая минимуму амплитуды поля E вдоль прямой ξ_i , должна удовлетворять условию:

$$E'(\xi_i) = \frac{\partial E(\sigma_i)}{\partial \xi_i} = 0.$$
(17)

В результате решения уравнения (17) получается вектор значений σ (рисунок 36), который к уже имеющемуся условию (10) и начальному условию (12) накладывает дополнительные ограничения на выбор радиуса диафрагмы:

$$\begin{cases} R_i \leq \sigma_i, \\ R_{i+1} \leq L_{i,i+1} - \sigma_i \end{cases},$$
(18)

но для двух крайних диафрагм (индексов i: 2(n-1), 2n-1) условие (18) неприменимо, поэтому здесь необходимо использовать следующее:

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №5, 2024

$$\begin{cases} R_{2(n-1)} \leq \sigma_{2(n-1)}; \\ R_{2(n-1)} \leq R_0 - L_{2(n-1)}; \\ R_{2n-1} \leq L_{2(n-1),2n-1} - \sigma_{2(n-1)}. \end{cases}$$
(19)

При возникновении ситуации, когда $R_i + R_{i+1} > L_{i,i+1}$ – максимальный из двух радиусов следует уменьшать, пока не начнет выполняться условие:

$$R_i + R_{i+1} \le L_{i,i+1}, \tag{20}$$

исключающее наложение соседних диафрагм.

Рис. 3. Зависимость модуля амплитуды поля E (a) и его нормированной производной (б) вдоль ξ для моды $TE_{12,4}$.

В таблице 1 приведены расчеты параметров диафрагм высокочастотного фильтра в круглом волноводе радиусом $R_0 = 16$ мм для выделения моды $TE_{12,4}$ на частоте $3f_0 = 105$ ГГц. Параметры минимального и максимального радиусов диафрагм, в соответствии с условием (10), следующие: $R_{\min} = 0.878$ мм, $R_{\max} = 1.093$ мм.

i	L_i	R_i	$L_{i,i+1}$	σ_i
0	_	16	_	_
1	8.480	1.093	2.100	1.216
2	10.192	0.995	1.874	1.010
3	11.424	0.878	2.009	0.868
4	12.672	1.093	2.070	1.323
5	13.808	0.878	2.196	0.773
6	14.944	1.056	2.282	3.192
7	16	0.878	_	—

Таблица 1 – Параметры модового фильтра для моды ТЕ_{12,4} (размеры в мм).

2. Моделирование методом конечных разностей во временной области

Для дальнейшего анализа фильтра было проведено электродинамическое моделирование в пакете CST MWS. В силу симметрии задачи на первом этапе при рассмотрении мод высших типов круглого волновода модель для анализа третьей гармоники была построена только для одного сектора 2θ (рисунок 4a). Регулярные участки волноводов до и после фильтра были взяты в половину радиуса *R*₀. Размеры и положение диафрагм устанавливались согласно таблице 1. Толщина фильтра являлась варьируемым параметром. Ha векторном представлении поля (рисунок 4в) видно, что возбуждение диафрагм происходит в соответствии со структурой поля основной моды круглого волновода TE_{1.1}. Для моделирования первой гармоники сектор был увеличен до 6θ (рисунок 5а).

Рис. 4. Моделирование моды *TE*_{12,4} круглого волновода на частоте 105 ГГц: объемная модель (а), распределение модуля (б) и векторное изображение (в) поля *E* в возбуждающем порте.

Рис. 5. Моделирование моды *TE*_{4,2} круглого волновода на частоте 35 ГГц: объемная модель (а), распределение модуля (б) и векторное изображение (в) поля *E* в возбуждающем порте.

На рисунках 6 и 7 представлены *S*-параметры фильтра в зависимости от его толщины для моды TE_{12,4} на частоте 105 ГГц, на рисунках 8 и 9 – для моды TE_{4,2} на частоте 35 ГГц. Кроме интересующих нас мод дополнительно добавлены значимые моды, возникающие в результате дифракционных эффектов.

Рис. 6. Зависимость коэффициента прохождения *S*₂₁ от толщины фильтра.

Рис. 7. Зависимость коэффициента отражения S_{11} от толщины фильтра.

Рис. 8. Зависимость коэффициента прохождения S_{21} от толщины фильтра.

Рис. 9. Зависимость коэффициента отражения S_{11} от толщины фильтра.

Из рисунка 6 видно, что при возбуждении моды $TE_{12,4}$ в запитывающем порте *1* модуль коэффициента прохождения S_{21} имеет осциллирующий характер в зависимости от толщины фильтра, что объясняется наличием дисперсии в круглом волноводе: отличающиеся продольные волновые числа (8) в каждой *i*-й диафрагме соответствуют различным длинам волноводных волн, определяемых формулой:

$$\Lambda_i = 2\pi / \sqrt{k^2 - g_i^2} \,. \tag{21}$$

Таким образом, на выходе фильтра результирующее поле сильно зависит от фазовых соотношений между отдельными *i*-ми волнами, распространяющимися в диафрагмах.

Для выделения третьей гармоники с обеспечением развязки в 30 дБ относительно первой целесообразно выбрать толщину фильтра равной 1.5 мм, при которой у моды $TE_{12,4}$ $S_{21} = -2.05$ дБ (рисунок 6), трансформация в другие

высшие типы мала, и коэффициент отражения S_{11} (рисунок 7) менее -20 дБ. Тогда для моды $TE_{4,2} S_{21} = -32.3$ дБ (рисунок 8), $S_{11} = -0.05$ дБ (рисунок 9).

На втором этапе были выполнены расчеты полноразмерной модели. На рисунке 10 представлено распределение модуля поля *E* в боковом сечении (плоскость *YOZ*) для моды $TE_{4,2}$ (35 ГГц) и моды $TE_{12,4}$ (105 ГГц), на рисунке 11 – для моды $TE_{12,4}$ в торцевом сечении (параллельно плоскости *XOY*) на входе и выходе круглого волновода. Визуально видно трансформацию моды $TE_{12,4}$ в саму себя на частоте 105 ГГц и полное запирание моды $TE_{4,2}$ на частоте 35 ГГц.

Рис. 10. Распределение модуля поля E в плоскости YOZ: а – мода $TE_{4,2}$, частота 35 ГГц; б – мода $TE_{12,4}$, частота 105 ГГц.

Рис. 11. Распределение модуля поля E моды $TE_{12,4}$ в возбуждающем порте (а) и на выходе из волновода после фильтра (б).

На третьем этапе было проведено моделирование *S*-параметров для двух ортогональных поляризаций моды $TE_{12,4}$, соответствующих обоим решениям (2): при $\alpha = 0^{\circ}$ и $\alpha = 90^{\circ}/m$, где α – угол между осью симметрии фильтра и поляризацией волны. Результаты представлены на рисунке 12, из которого следует, что вблизи рабочей частоты 105 ГГц для ориентации $\alpha = 0^{\circ}$ допускается отстройка по частоте, однако получившийся фильтр требует строгого совпадения поляризации поля со своей структурой, так как для $\alpha = 90^{\circ}/m$ коэффициент прохождения $S_{21} = -32,28$ дБ.

Рис. 12. *S*-параметры для моды $TE_{12,4}$.

Также стоит обратить внимание, прежде что рассматривалась модель, где стенки волновода идеально идеализированная выполнены проводящими не учитывались технологические допуски конкретного И При производства. невозможности изготовления структуры фильтра в заданных размерах следует уменьшать радиусы диафрагм, начиная с максимального i-го индекса, но выдерживать размеры не менее R_{\min} .

Если все диафрагмы выполнить единым размером R_{\min} , то коэффициент прохождения $S_{21} = -2,33$ дБ на частоте 105 ГГц (для $\alpha = 0^{\circ}$), что составляет вполне допустимое значение. Однако S_{21} быстро уменьшается при $\alpha \rightarrow 90^{\circ}/m$ и при полном рассогласовании ($\alpha = 90^{\circ}/m$) $S_{21} = -51,46$ дБ, что поясняется рисунком 13. На рисунке 13 кривые R_{opt} соответствуют оптимальному фильтру с параметрами из таблицы 1, кривые R_{min} — фильтру с диафрагмами, выполненными единым радиусом R_{min} .

14

Рис. 13. Зависимость коэффициента прохождения *S*₂₁ для моды TE_{12,4} от ее поляризации: *α* – угол между осью симметрии фильтра и поляризацией волны.

Заключение

Предложена методика проектирования модового фильтра круглого TE волновода, предназначенного для выделения моды высокого Эффективность данной методики порядка, согласованного с ее полем. продемонстрирована на примере выделения моды третьей гармоники ТЕ_{12.4} сильноточного гиротрона Ка-диапазона на фоне преобладающего излучения на основной циклотронной гармонике на моде TE_{4,2}. Вместе с тем следует отметить, что в реальном импульсном гиротроне конкретное распределение поля является случайной величиной, определяемой многими параметрами. Однако для каждого режима можно подстроить согласование фильтра с генерируемой волной путем изменения его положения вдоль оси волноводного тракта гиротрона.

Отметим также, что вряд ли можно рассчитывать на реализацию полного согласования в силу разброса параметров от импульса к импульсу, но произвести тонкую подстройку вполне осуществимо, тем самым повысив качество экспериментальных исследований кратных гармоник, мощность которых в тысячи раз меньше, чем у основной рабочей моды конкретного гиротрона.

Финансирование: Работа выполнена при поддержке Российского научного фонда, грант №23-12-00161.

15

Литература

- Sidorov, A.V. Terahertz gas discharge: current progress and possible applications / A.V. Sidorov // J. Phys. D: Appl. Phys. – 2022. – Vol. 55. – Art. no. 293001. – https://doi.org/10.1088/1361-6463/ac5556
- Sidorov, A.V. THz gas discharge in nitrogen as a source of ultraviolet radiation / A.V. Sidorov, M.Yu. Glyavin, A.G. Luchinin [et al.] // Journal of Physics: Conference Series. – 2020. – Vol. 1697. – Art. no. 012213. – https://doi.org/10.1088/1742-6596/1697/1/012213
- Леонтьев, А.Н. Возбуждение высоких циклотронных гармоник в сильноточном релятивистском гиротроне в режиме умножения частоты / А.Н. Леонтьев, Р.М. Розенталь, Н.С. Гинзбург [и др.] // Письма в ЖТФ. – 2022. – Т. 48. – Вып. 24. – С. 11-14.
- Леонтьев, А.Н. Умножение частоты в сильноточном релятивистском гиротроне для получения мощного излучения терагерцевого диапазона / А.Н. Леонтьев, Р.М. Розенталь, Н.С. Гинзбург [и др.] // Известия РАН. Серия физическая. – 2023. – Т. 87. – № 1. – С. 56–60.
- Idehara, T. Frequency measurement of a submillimeter wave gyrotron output / T. Idehara, Y. Yamagishi, T. Tatsukawa // Int J Infrared Milli Waves. 1997. Vol. –P. 259-272. https://doi.org/10.1007/BF02677910
- Glyavin, M. Investigation of the Frequency Double-Multiplication Effect in a Sub-THz Gyrotron / M. Glyavin, I. Zotova, R. Rozental [et al.] // Journal of Infrared, Millimeter, and Terahertz Waves. – 2020. – Vol. 41. – P. 1245-1251. – https://doi.org/10.1007/s10762-020-00726-x
- Golubiatnikov, G.Y. Sub-Terahertz High-Sensitivity High-Resolution Molecular Spectroscopy With a Gyrotron / G.Y. Golubiatnikov, M.A. Koshelev, A.I. Tsvetkov [et al.] // IEEE Trans. THz Sci. Tech. – 2020. – Vol. 10. – No. 5. – P. 502-512. – https://doi.org/10.1109/TTHZ.2020.2984459

- Denisov, G.G. Boosted excitation of the fifth cyclotron harmonic based on frequency multiplication in conventional gyrotrons / G.G. Denisov, I.V. Zotova, A.M. Malkin [et al.] // Phys. Rev. E. – 2022. – Vol. 106. – Art. no. L023203. – https://doi.org/10.1103/PhysRevE.106.L023203
- Братман, В.Л. Циклотронные и синхротронные мазеры / В.Л. Братман, Н.С. Гинзбург, Г.С. Нусинович [и др.] // В кн. Релятивистская высокочастотная электроника. – Горький: ИПФАН, 1979. – С. 157–216.
- Абубакиров, Э.Б. Первые экспериментальные исследования сильноточного релятивистского гиротрона КА-диапазона с компрессией пучка в электроннооптической системе / Э.Б. Абубакиров, А.Н. Денисенко, А.Н. Леонтьев [и др.] // Изв. вузов. Радиофизика. – 2023. – Т. 66. – № 7-8. – С. 637–644.
- Никольский, В.В. Электродинамика и распространение радиоволн / В.В. Никольский, Т.И. Никольская: Учеб. пособие для вузов. – 3-е изд., перераб. и доп. – М.: Наука. Гл. ред. физ.-мат. лит., 1989. – 544 с.
- 12. Вайнштейн, Л.А. Электромагнитные волны / Л.А. Вайнштейн. 2-е изд., перераб. и доп. М.: Радио и связь, 1988. 440 с.

Для цитирования:

Леонтьев А.Н., Минеев К.В., Розенталь Р.М. Расчет фильтра для выделения излучения третьей гармоники циклотронной частоты сильноточного гиротрона Ка-диапазона. // Журнал радиоэлектроники. – 2024. – №. 5. https://doi.org/10.30898/1684-1719.2024.5.4