Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹5

Contents

Full text (pdf)

Russian page

 

  

DOI: https://doi.org/10.30898/1684-1719.2024.5.5  

 

 

EFFECT OF THE ELECTRON DRIFT IN GRAPHENE

ON THE POLARIZATION conversion

OF A NORMALLY INCIDENT WAVE

 

I.M. Moiseenko 1,2, V.V. Popov 2

 

1 Moscow Institute of Physics and Technology (National Research University)

141700, Russia, Dolgoprudny, Institutsky per., 9

2 Kotelnikov IRE RAS, Saratov Branch

410019, Russia, Saratov, Zelenaya str., 38

 

The paper was received April 4, 2024.

 

Abstract. The polarization conversion of an electromagnetic wave normally incident on graphene with a direct electric current is investigated in the hydrodynamic approach. It is shown that the dynamic conductivity of graphene depends on the direction of electron drift even in the absence of spatial dispersion (i.e., for long electromagnetic waves). This changes the polarization of electromagnetic radiation at terahertz frequencies. The real part of the dynamic conductivity of graphene with electron drift can be negative, which leads to amplification of terahertz wave.

Key words: graphene, terahertz radiation, polarization conversion.

Financing: this study was funded by the Russian Science Foundation grant No. 22-79-00262.

Corresponding author: Moiseenko Ilia Mikhailovich, MoiseenkoIM@yandex.ru

 

 

References

1. Bandurin D. A. et al. Resonant terahertz detection using graphene plasmons // Nature communications. – 2018. – Ò. 9. – ¹. 1. – Ñ. 5392. https://doi.org/10.1038/s41467-018-07848-w

2. Abidi E. et al. Terahertz detection by asymmetric dual grating gate bilayer graphene fets with integrated bowtie antenna // Nanomaterials. – 2024. – Ò. 14. – ¹. 4. – Ñ. 383. https://doi.org/10.3390/nano14040383

3. Boubanga-Tombet S. et al. Room-temperature amplification of terahertz radiation by grating-gate graphene structures // Physical Review X. – 2020. – Ò. 10. – ¹. 3. – Ñ. 031004. https://doi.org/10.1103/PhysRevX.10.031004

4. Cosme P., Terças H. Terahertz laser combs in graphene field-effect transistors // ACS Photonics. – 2020. – Ò. 7. – ¹. 6. – Ñ. 1375-1381. https://doi.org/10.1021/acsphotonics.0c00313

5. Xiao Z. et al. Switchable polarization converter with switching function based on graphene and vanadium dioxide // Journal of Electronic Materials. – 2023. – Ò. 52. – ¹. 3. – Ñ. 1968-1976. https://doi.org/10.1007/s11664-022-10149-0

6. Polischuk O. V., Melnikova V. S., Popov V. V. Giant cross-polarization conversion of terahertz radiation by plasmons in an active graphene metasurface // Applied Physics Letters. – 2016. – Ò. 109. – ¹. 13. https://doi.org/10.1063/1.4963276

7. Guo T., Argyropoulos C. Broadband polarizers based on graphene metasurfaces // Optics letters. – 2016. – Ò. 41. – ¹. 23. – Ñ. 5592-5595. https://doi.org/10.1364/OL.41.005592

8. Moiseenko I. M., Fateev D. V., Popov V. V. Dissipative drift instability of plasmons in a single-layer graphene // Physical Review B. – 2024. – Ò. 109. – ¹. 4. – Ñ. L041401. https://doi.org/10.1103/PhysRevB.109.L041401

9. Narozhny B. N. Electronic hydrodynamics in graphene // Annals of Physics. – 2019. – Ò. 411. – Ñ. 167979. https://doi.org/10.1016/j.aop.2019.167979

10. Bandurin D. A. et al. Negative local resistance caused by viscous electron backflow in graphene // Science. – 2016. – Ò. 351. – ¹. 6277. – Ñ. 1055-1058. https://doi.org/10.1126/science.aad0201

11. Kumar C. et al. Imaging hydrodynamic electrons flowing without Landauer–Sharvin resistance // Nature. – 2022. – Ò. 609. – ¹. 7926. – Ñ. 276-281. https://doi.org/10.1038/s41586-022-05002-7

 

For citation:

Moiseenko I.M., Popov V.V. Effect of the electron drift in graphene on the polarization conversion of a normally incident wave. // Journal of Radio Electronics. – 2024. – ¹. 5. https://doi.org/10.30898/1684-1719.2024.5.5