Journal of Radio Electronics. eISSN 1684-1719. 2024. №5

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.5.6

 

 

 

STRUCTURAL DOMAINS OF AUSTENITE
of NON-STOCHIOMETRIC HEUSLER ALLOYS
BASED ON
Ni-Mn-In

 

D.D. Kuznetsov1, A.V. Mashirov1, E.I. Kuznetsova2, A.V. Prokunin1,
D.V. Danilov3, I.I. Musabirov4, V.V. Koledov1, V.G. Shavrov1

 

1Kotelnikov Institute of Radioengineering and Electronics RAS,

125009 Russia, Moscow, Mokhovaya str., 11, b. 7;

2M.N. Mikheev Institute of Metal Physics of Ural Branch of RAS

620108, Russia, Ekaterinburg, Sofia Kovalevskaya st., 18;

3IRC for Nanotechnology of the Science Park of St. Petersburg State University,
199034, Russia, St. Petersburg;

4Institute for Metals Superplasticity Problems RAS

450001, Russia, Ufa, S. Khalturin str., 39;

 

The paper was received Apryl 25, 2024

 

Abstract. The relationship between antiphase boundaries (APBs), antiphase domains (APDs) and the functional properties of alloys of the Ni-Mn-In system has been studied. The density of APBs was controlled using various thermal treatments. The fine domain structure was observed by transmission electron microscopy (TEM), high-angle dark-field scanning transmission electron microscopy (HAADF-STEM), and electron backscatter diffraction (EBSD). The results obtained are discussed in the context of the possibility of modeling and designing materials with specified characteristics and properties.

Key words: antiphase boundaries, antiphase domains, Heusler structures, ordered austenite solid solution.

Financing: The study was supported by a grant from the Russian Science Foundation, project No. 20-79-10197, https://rscf.ru/project/20-79-10197/.

Corresponding author: Dmitry Dmitrievich Kuznetsov, Kuznetsov.dmitry89@gmail.com

References

1. Koval Y., Ponomaryova S., Odnosum V., Ponomaryov O. Atomic ordering and parameters of martensitic transformation in Fe-based alloys // Materials Today: Proceedings. — 2015. — 2S. — S739 – S742.

2. Oikawa K., Ota T., Ohmori T., Tanaka Y., Morito H., Fujita A., Kainuma R., Fukamichi K., Ishida K. Magnetic and martensitic phase transitions in ferromagnetic Ni–Ga–Fe shape memory alloys // Applied Physics Letters. 2002. — V. 81. — N 27. — P. 5201-5303.

3. Seguí C., Cesari E. Ordering mechanism and kinetics in Ni2Mn1−xCuxGa ferromagnetic shape memory alloys // Journal of Alloys and Compounds. — 2021. —  V. 887. — 161302.

4. Sánchez-Alarcos V., Pérez-Landazábal J.I., Gómez-Polo C., Recarte V. Influence of the atomic order on the magnetic characteristics of a Ni–Mn–Ga ferromagnetic shape memory alloy // J. Magn. Magn. Mater. — 2008. — 320. — P. e160-e163.

5. Murakami Y., Yanagisawa K., Niitsu K., Park H. S., Matsuda T., Kainuma R., Shindo D., Tonomura A. Determination of magnetic flux density at the nanometer-scale antiphase boundary in Heusler alloy Ni50Mn25Al12.5Ga12.5 // Acta Mater. —  2013. — 61(6):2095 – 2101.

6. Umetsu R. Y., Ishikawa H., Kobayashi K., Fujita A., Ishida K., and Kainuma R. Effects of the antiferromagnetic anti-phase domain boundary on the magnetization processes in Ni2Mn(Ga0.5Al0.5) Heusler alloy // Scripta Mater. – 2011. — 65(1):41– 44.

7. Niitsu K., Minakuchi K., Xu X., Nagasako M., Ohnuma I., Tanigaki T., Murakami Y., Shindo D., and Kainuma R. Atomic-resolution evaluation of microsegregation and degree of atomic order at antiphase boundaries in Ni50Mn20In30 Heusler alloy // Acta Mater. – 2017. —  122:166 —177.

8. Zweck U., Neibecker P., Mühlbauer S., Zhang Q., Chiu P.Y., Leitner M. Magnetization reversal induced by antiphase domain boundaries in Ni2MnZ Heusler compounds // Physica Review B. — 2022. — 106. — 224106-1.

9. Yan H.L., Huang X.M., Esling C. Recent Progress in Crystallographic Characterization, Magnetoresponsive and Elastocaloric Effects of Ni-Mn-In-Based Heusler Alloys—A Review // Front. Mater. — 2022. — 9. — 85.

10. Karaca H.E., Karaman I., Basaran B., Ren Y., Chumlyakov Y.I., Maier H.J. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys - a new actuation mechanism with large work output // Adv. Funct. Mater. — 2009. — 19. — 983-998.

11. Yan H.L., Zhang Y.D., Xu N., Senyshyn A., Brokmeier H.-G., Esling C., Zhao X.,  Zuo L. Crystal structure determination of incommensurate modulated martensite in Ni–Mn–In Heusler alloys // Acta Mater. — 2015. — 88. — P.375-388.

12. Максимов К.С., Максимов С.К. Структурно-морфологический контроль наночастиц и его проблемы // Материалы электронной техники. — 2012. — № 1. — С. 4-15.

13. Kuznetsov D.D., Kuznetsova E.I., Mashirov A.V., Loshachenko A.S., Danilov D.V., Mitsiuk V.I., Kuznetsov A.S., Shavrov V.G., Koledov V.V., Ari-Gur P. Magnetocaloric Effect, Structure, Spinodal Decomposition and Phase Transformations Heusler Alloy Ni-Mn-In // Nanomaterials. — 2023. — V. 13. — P. 1385—1402.

14. Kuznetsov D., Kuznetsova E., Mashirov A., Danilov D., Shandryuk G., Musabirov I., Shchetinin I,, Prokunin A., von Gratowski S., ShavrovV. Influence of the Cooling Rate on Austenite Ordering and Martensite Transformation in a Non-Stoichiometric Alloy Based on Ni-Mn-In // Journal of Composites Science. — 2023. — V. 7. — P. 514—533.

15. Kuznetsov D.D., Kuznetsova E.I., Mashirov A.V., Loshachenko A.S., Danilov D.V., Shandryuk G.A., Shavrov V.G., Koledov V.V. In Situ TEM Study of Phase Transformations in Nonstoichiometric Ni46Mn41In13 Heusler Alloy // Physics of the Solid State. — 2022. — V. 64. — P. 15—21.

16. Kuznetsov D.D., Kuznetsova E.I., Danilov D.V., Musabirov I.I., Prokunin A.V., Koledov V.V., Shavrov V.G. High-temperature treatment of functional Heusler alloy Ni46Mn41In13 thin foils for microsystem devices and electronics // Journal of Radio Electronics.  — 2024. — 04 https://doi.org/10.30898/1684-1719.2024.4.9

For citation:

Kuznetsov D.D., Mashirov A.V., Kuznetsova E.I., Prokunin A.V., Danilov D.V., Musabirov I.I., Koledov V.V., Shavrov V.G. Structural domains of austenite of non-stochiometric heusler alloys based on Ni-Mn-In. //Journal of Radio Electronics. – 2024. – № 5. https://doi.org/10.30898/1684-1719.2024.5.6 (In Russian)