Journal of Radio Electronics. eISSN 1684-1719. 2024. №5

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.5.7

 

 

 

APPLICATION OF ADDITIVE TECHNOLOGIES
FOR THE MANUFACTURE OF A MODEL OF THE SLOW SYSTEM
OF A MILLIMETER waveband TRAVELING WAVE tube

 

A.A. Ivanov1, M.V. Morozkin1, A.A. Orlovskiy1,2, M.D. Proyavin1,
R.M. Rozental1, M.Yu. Shmelev1

 

1 Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences,
603950, Russia, Nizhny Novgorod, Ul'yanov St., 46

2 Volga State University of Water Transport,
603950, Russia, Nizhny Novgorod, Nesterova st. 5

 

Thepaperwasreceived March 27, 2024.

 

Abstract. Using the technology of photopolymer three-dimensional printing with subsequent metallization, a prototype of a slow-wave system for a Q-band traveling wave lamp was manufactured. The deviations in the size of one period of the slow-wave system detected on the measuring microscope did not exceed 5 μm. The results of “cold” electrodynamic measurements of the manufactured system demonstrated good agreement with the calculated data.

Keywords: traveling wave tube, slow-wave structure, additive technologies, three-dimensional printing.

Financing: The work is supported by the state task FFUF-2024-0027

Correspondingauthor:Ivanov Anton Alekseevich, a.ivanov@ipfran.ru

References

1. Алехин Ю.В. и др. Сверхширокополосные лампы бегущей волны. Исследование в СВЧ-КВЧ-и ТГЧ-диапазонах. Внедрение в производство. [Ultra-wideband TWTs. Research in microwave, EHF and THF ranges. Implementation into production] – 2015.

2. Paoloni C. et al. Millimeter wave traveling wave tubes for the 21st century //Journal of Electromagnetic Waves and Applications. – 2021. – Т. 35. – №. 5. – С. 567-603. https://doi.org/10.1080/09205071.2020.1848643

3. Богомолова Е.А. и др. ЛБВ миллиметрового и терагерцового диапазонов: особенности конструкций замедляющих систем и технологий изготовления. [TWTs of millimeter and terahertz ranges: design features of slow-wave systems and manufacturing technologies] //Электронная техника. Серия 1: СВЧ-техника. – 2020. – №. 3. – С. 66-83.

4. Torgashov R.A. et al. Development and Investigation of a Slow-Wave Structure for a Miniature Multiple-Beam W-Band Traveling Wave Tube //Journal of Communications Technology and Electronics. – 2023. – Т. 68. – №. 10. – С. 1209-1213. https://doi.org/10.1134/S1064226923100182.

5. Sence J. et al. Plastic and metal additive manufacturing technologies for microwave passive components up to Ka band //International Journal of Microwave and Wireless Technologies. – 2018. – Т. 10. – №. 7. – С. 772-782.  https://doi.org/10.1017/S1759078717001465

6. Verploegh S. et al. Properties of 50–110-GHz waveguide components fabricated by metal additive manufacturing //IEEE Transactions on Microwave Theory and Techniques. – 2017. – Т. 65. – №. 12. – С. 5144-5153. https://doi.org/10.1109/TMTT.2017.2771446

7. Proyavin M.D. et al. Development of electrodynamic components for microwave electronic devices using the technology of 3D photopolymer printing with chemical surface metallization //Radiophysics and Quantum Electronics. – 2020. – Т. 63. – С. 469-478. https://doi.org/10.1007/s11141-021-10072-0.

8. Starodubov A.V. et al. Technologies for forming electrodynamic structures for millimeter-wave and terahertz vacuum microelectronic devices //Journal of Communications Technology and Electronics. – 2022. – Т. 67. – №. 10. – С. 1189-1197. https://doi.org/10.1134/S1064226922100126.

9. Ivanov A.A. On studying the possibility to improve the output characteristics of W-band traveling-wave tubes //Radiophysics and Quantum Electronics. – 2017. – Т. 59. – №. 8-9. – С. 648-655. http://dx.doi.org/10.1007/s11141-017-9731-0.

10. D’Auria M. et al. 3-D printed metal-pipe rectangular waveguides //IEEE Transactions on Components, Packaging and Manufacturing Technology. – 2015. – Т. 5. – №. 9. – С. 1339-1349. https://doi.org/10.1109/TCPMT.2015.2462130

11. Chan K. Y., Ramer R., Sorrentino R. Low-cost Ku-band waveguide devices using 3-D printing and liquid metal filling //IEEE Transactions on Microwave Theory and Techniques. – 2018. – Т. 66. – №. 9. – С. 3993-4001. https://doi.org/10.1109/TMTT.2018.2851573

12. Sigmund P. Mechanisms and theory of physical sputtering by particle impact //Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. – 1987. – Т. 27. – №. 1. – С. 1-20. https://doi.org/10.1016/0168-583X(87)90004-8

13. Шпак И.Е. Электролиты для гальванического меднения. [Electrolytes for galvanic copper plating] – М. : Электроника, 1989.

14. Свиридов В. В. (ред.). Химическое осаждение металлов из водных растворов. [Chemical deposition of metals from aqueous solutions] Университетское, 1987.

15. Dionigi M. et al. Simple high-performance metal-plating procedure for stereolithographically 3-D-printed waveguide components //IEEE Microwave and Wireless Components Letters. – 2017. – Т. 27. – №. 11. – С. 953-955. https://doi.org/10.1109/LMWC.2017.2750090

 

For citation:

Ivanov A.A., Morozkin M.V., Orlovskiy A.A., Proyavin M.D., Rozental R.M., Shmelev M.Yu. Application of additive technologies for the manufacture of a model of the slow system of a millimeter waveband traveling wave tube. // Journal of Radio Electronics. – 2024. – №. 5. https://doi.org/10.30898/1684-1719.2024.5.7 (In Russian)