

DOI: https://doi.org/10.30898/1684-1719.2025.5.2 УДК: 621.391.825

ОПТИМИЗАЦИЯ ПАРАМЕТРОВ ПОПЕРЕЧНОГО СЕЧЕНИЯ УСТРОЙСТВ ЗАЩИТЫ ОТ СВЕРХКОРОТКИХ ИМПУЛЬСОВ, РАБОТАЮЩИХ В ДИФФЕРЕНЦИАЛЬНОМ И СИНФАЗНОМ РЕЖИМАХ

В.П. Костелецкий, Е.Б. Черникова, А.М. Лакоза

Томский государственный университет систем управления и радиоэлектроники, 634050, г. Томск, пр. Ленина, д. 40

Статья поступила в редакцию 11 февраля 2025 г.

Аннотация. В работе представлен подход к разработке устройств защиты от сверхкоротких импульсов (СКИ), работающих в дифференциальном и синфазном режимах. Приведены результаты обоснования структурного исполнения устройств и выбора схемных моделей, учитывающих режимы при моделировании. Выполнена параметрическая оптимизация поперечных сечений 6- и 8-проводных структур. Оптимизация выполнялась по двум критериям: минимизация амплитуды напряжения на выходе для дифференциального и синфазного режимов по-отдельности и минимизация квадрата разности максимального и минимального временных интервалов для увеличения минимального значения разности погонных задержек, и, как следствие, максимизации длительности СКИ, который может полностью раскладываться. Результаты моделирования с оптимальными параметрами показали, что ослабление СКИ в исследуемых структур увеличилось в среднем в 12 раз в обоих режимах, по сравнению с ослаблением, полученным до оптимизации. Из анализа частотных и временных характеристик получено, что 6-проводная структура оптимальна для использования в качестве защиты цепей питания, а 8-проводная – как для защиты цепей питания, так и сигнальных цепей.

Ключевые слова: устройства защиты, электромагнитная совместимость, дифференциальный режим, синфазный режим, модальное разложение, радиоэлектронная аппаратура.

Финансирование: Исследование выполнено за счет гранта Российского научного фонда № 23-79-01216, https://rscf.ru/project/23-79-01216/ в ТУСУРе и при поддержке Минобрнауки России по проекту FEWM-2024-0005.

Автор для переписки: Черникова Евгения Борисовна, chiernikova96@mail.ru

Введение

Повышенная восприимчивость современной радиоэлектронной аппаратуры (РЭА) к кондуктивным помеховым воздействиям актуализирует проблему электромагнитной совместимости (ЭМС) [1]. Наиболее опасными видами воздействий помеховых являются сверхширокополосные импульсы субнаносекундной И наносекундной длительности [2]. Сверхкороткие импульсы (СКИ) перекрывают значительный частотный диапазон, благодаря чему преодолевают средства защиты РЭА, основанные на традиционных конструкторских и схемотехнических решениях. Распространение таких помех по линиям передачи меняет электрические параметры радиоэлектронных пробою компонентов, приводит К электрическому полупроводников и диэлектриков с последующим выходом оборудования из строя. Кроме того, СКИ могут приводить к функциональным сбоям. Их уровень может достигать значений, сопоставимых с уровнем информационных сигналов, тем самым влияя на логику работы устройств. Совокупность уменьшения напряжений логических уровней, увеличения рабочих частот РЭА, ужесточающихся требований к регламентируемым уровням помеховых эмиссий, а также необходимость подавления помеховых эмиссий в дифференциальном и синфазном режимах работы одновременно приводит к потребности в новых, более совершенных, устройств защиты [3, 4]. При разработке современных

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №5, 2025</u>

устройств защиты широко используют технические решения, основанные на применении полосковых фильтров. На основе линий передачи с неоднородным диэлектрическим заполнением создаются устройства защиты от СКИ, которые раскладывают помеху на составляющие с меньшей амплитудой из-за разности фазовых скоростей в линии [5]. Они обеспечивают высокую надежность и отказоустойчивость благодаря отсутствию пассивных и активных радиоэлектронных компонентов, что делает их предпочтительным выбором для защиты от импульсных помех малой длительности. Для повышения эффективности таких устройств с эффектом модального разложения необходимо оптимизировать параметры их поперечных сечений. Оптимизация позволяет улучшить характеристики устройства, снижая амплитуду выходного сигнала и увеличивая временные интервалы между импульсами, тем самым обеспечивая лучшее ослабление помех [6]. Таким образом, целью работы является разработка и оптимизация новых устройств защиты радиоэлектронной аппаратуры от СКИ, работающих в дифференциальном и синфазном режимах.

1. Структуры, методы, схемы

Существует несколько подходов к разработке устройств защиты от СКИ с эффектом модального разложения. Один из них заключается в использовании в составе устройства общего диэлектрического основания для размещения на нем необходимой конфигурации проводников, тем самым упрощая и удешевляя конструкцию. Другой метод предполагает объединений двух и более обособленных структур в единую конструкцию устройства защиты, что позволяет получить большую разность погонных задержек мод. Кроме того, этот подход предпочтителен при разработке устройства защиты, работающего в дифференциальном и синфазном режимах.

Исследованы два поперечных сечения устройств защиты, работающих в дифференциальном и синфазном режимах, представляющие собой 6и 8-проводные структуры. Параметры и структуры исследуемых поперечных сечений выбраны путем предварительного многовариантного анализа [7].

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №5, 2025

Их проводники специальным образом сконфигурированы на общем диэлектрическом основании и объединены в одну конструкцию из двух структур, в которых опорные проводники соединены между собой на ближнем и дальнем концах.

Поперечные сечения исследуемых устройств защиты характеризуются следующими параметрами: ширина проводников (*w*), расстояние между проводниками (*s*), расстояние от проводника до края диэлектрика (*d*), толщина диэлектрических слоев (*h*₁), толщина воздушного зазора между структурами (*h*₂), толщина проводников (*t*), диэлектрическая проницаемость слоев (ε_{r1}), диэлектрическая проницаемость окружающего воздуха (ε_{r2}), длина структуры (*l*).

На рис. 1*а* представлено поперечное сечение 6-проводной структуры, работающей в дифференциальном и синфазном режимах. Исходные геометрические параметры поперечного сечения: w = 6 мм, s = 2 мм, d = 1 мм, h1 = 500 мкм, h2 = 1360 мкм, t = 105 мкм, $\varepsilon_{r1} = 10$, $\varepsilon_{r2} = 1$, l = 100 мм. Схема электрических соединений исследуемого поперечного сечения представлена на рис. 1*б*.

Рис. 1. Поперечное сечение (*a*) и схема электрических соединений (б) б-проводной структуры.

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №5, 2025</u>

На рис. 2*а* представлено поперечное сечение 8-проводной структуры, работающей в дифференциальном и синфазном режимах. А на рис. 2*б* его схема электрических соединений. Геометрические параметры поперечного сечения 8-проводной структуры: w = 3 мм, s = 3 мм, d = 1,50 мм, h1 = 500 мкм, h2 = 800 мкм, t = 105 мкм, $\varepsilon_{r1} = 10$, $\varepsilon_{r2} = 1$, l = 100 мм.

Рис. 2. Поперечное сечение (*a*) и схема электрических соединений (б) 8-проводной структуры.

Предварительное квазистатическое моделирование выполнено в ПО TUSUR.EMC [8] без учета потерь в проводниках и диэлектриках. В качестве входного воздействия использован СКИ трапецеидальной формы с длительностями фронта, спада и плоской вершины по 0,1 нс и амплитудой э.д.с 1 В (рис. 3) [9].

Рис. 3. Форма э.д.с. входного воздействия.

Реализация режимов воздействия при компьютерном моделировании выполнена источниками э.д.с. $E_{\Gamma 1}$ и $E_{\Gamma 2}$. Для дифференциального режима $E_{\Gamma 1} = 0,5$ В, $E_{\Gamma 2} = -0,5$ В, а для синфазного режима $-E_{\Gamma 1} = E_{\Gamma 2} = 1$ В. Напряжение на выходе защитного устройства определяется по выражению (1) для дифференциального режима и по выражению (2) для синфазного режима [10].

$$U_{DM} = U_1 - U_2, (1)$$

$$U_{CM} = \frac{U_1 + U_2}{2},$$
 (2)

где U_1 – напряжение на выходе линии, к которой подключен источник э.д.с E_{Γ_1} , U_2 – напряжение на выходе линии, к которой подключен источник э.д.с E_{Γ_2} .

При моделировании приняты следующие значения номиналов оконечных нагрузок: сопротивление на концах активных проводников R = 50 Ом, на ближних концах пассивных проводников короткое замыкание (K3) – 1 мОм, на ближних дальних концах пассивных проводников холостой ход (XX) – 1 МОм. Для обеспечения одинаковых условий моделирования для всех исследуемых структур l = 100 мм. Активными проводниками являются те, на которые подключены источники э.д.с., остальные проводники пассивные.

На рис. 4 показаны формы напряжения на выходе 6-проводной структуры в дифференциальном и синфазном режимах.

Рис. 4. Формы напряжения на выходе 6-проводной структуры в дифференциальном (...) и синфазном (—) режимах.

В результате моделирования получено, что при данных параметрах поперечного сечения погонные задержки мод равны: $\tau_1 - 3,83$ нс/м, $\tau_2 - 3,87$ нс/м, $\tau_3 - 9,72$ нс/м, $\tau_4 - 9,74$ нс/м, $\tau_5 - 9,98$ нс/м, $\tau_6 - 10$ нс/м. Также вычислены значения максимального напряжения U_{max} на выходе защитного устройства в дифференциальном режиме 216 мВ и в синфазном режиме – 195 мВ. В соответствии с режимом воздействия в дифференциальном режиме используются моды 1, 3 и 5, а синфазном – моды 2, 4 и 6. Импульс И1 формируется модой с погонной задержкой τ_1 в дифференциальном режиме и τ_2 – в синфазном. Импульс И2 формируется путем наложения мод с погонными задержками τ_3 , τ_5 в дифференциальном режиме и τ_4 , τ_6 – в синфазном. Максимальная амплитуда определяется импульсом И1 в обоих режимах. Остальные импульсы являются импульсами переотражения.

Коэффициент ослабления *k* защитного устройства определяется соотношением:

$$k = \frac{U_{\rm BX}}{U_{\rm BbIX}},\tag{3}$$

где $U_{\text{вх}} = E_{\Gamma}/2$ (половина э.д.с. или напряжение на согласованной нагрузке без устройства защиты), $U_{\text{вых}}$ – напряжение на выходе устройства защиты.

Коэффициент ослабления защитного устройства на основе 6-проводной структуры по (3) составил 2,56 раза для синфазного режима и 2,31 – для дифференциального режима.

На рис. 5 показаны формы напряжения на выходе 8-проводной структуры в синфазном и дифференциальном режимах.

Рис. 5. Формы напряжения на выходе 8-проводной структуры в дифференциальном (...) и синфазном (—) режимах.

В результате моделирования получено, что при данных параметрах поперечного сечения погонные задержки мод равны: $\tau_1 - 3,9$ нс/м, $\tau_2 - 5,2$ нс/м, $\tau_3 - 7,27$ нс/м, $\tau_4 - 7,3$ нс/м, $\tau_5 - 9,5$ нс/м, $\tau_6 - 9,91$ нс/м, $\tau_7 - 9,95$ нс/м, $\tau_8 - 9,97$ нс/м. Значения U_{max} на выходе защитного устройства в дифференциальном режиме равны 286 мВ, в синфазном режиме – 148 мВ. В соответствии с режимом воздействия в дифференциальном режиме используются моды 1, 3, 5 и 7, а синфазном – моды 2, 4, 6 и 8. В дифференциальном режиме U_{max} определяется импульсом $U1_{\text{диф\phi}}$, в синфазном – $U2_{\text{синф}}$. Амплитуда импульса $U1_{\text{диф\phi}}$ в дифференциальном режиме формируется модой с погонной задержкой τ_1 , а $U2_{\text{диф\phi}}$ – наложением мод с погонными задержками τ_5 и τ_7 , мода τ_3 имеет незначительную амплитуду и оказывают слабое влияние на формирование U_{max} в дифференциальном режиме. В синфазном режиме амплитуда импульса $U1_{\text{синф}}$ формируется модой с погонной задержкой τ_2 , а $U2_{\text{синф}}$ – наложением мод с погонной задержкой τ_2 , а $U2_{\text{синф}}$ – наложением мод с погонной задержкой τ_2 , а $U2_{\text{синф}}$ – наложением мод с погонной задержкой τ_2 , а $U2_{\text{синф}}$ – наложением мод с погонной задержкой τ_2 , а $U2_{\text{синф}}$ – наложением мод с погонной задержкой τ_2 , в $U2_{\text{синф}}$ – наложением мод с погонной задержкой τ_2 , в $U2_{\text{синф}}$ – наложением мод с погонной задержкой τ_3 , в синфазном режиме. Остальные импульсы

являются импульсами переотражения. Коэффициент ослабления защитного устройства относительно половины э.д.с. составил 3,38 раза для синфазного режима и 1,75 – для дифференциального режима.

Полученные результаты предварительного моделирования показали необходимость оптимизации по двум критериям, позволяющих достичь наибольших значений ослабления: минимизация амплитуды импульсов разложения на выходе и выравнивание временных интервалов между ними. Первый критерий позволяет увеличить коэффициент ослабления СКИ. Второй критерий позволяет увеличить максимальную длительность СКИ, а также перераспределить энергию помехового импульсного воздействия во времени. Эти критерии достигается путем поиска номиналов оконечных нагрузок на ближнем и дальнем концах, характеристического импеданса линии, а также изменения электромагнитной связи между проводниками. В данном случае предполагается достичь критерии путем изменения электромагнитной связи путем подбора геометрических параметров поперечных сечений. Для этого используется простой генетический алгоритм (ГА), реализованный в ПО TUSUR.EMC.

Для реализации амплитудного критерия в качестве целевой функции (ЦФ) выбрана минимизация максимальной амплитуды импульсов на выходе для дифференциального (U_{maxDM}) и синфазного (U_{maxCM}) режимов по-отдельности:

$$F_{\rm CM} = \max(U_{\rm CM}(t)), \tag{4}$$

$$F_{\rm DM} = \max(U_{\rm DM}(t)), \tag{5}$$

где $U_{CM}(t)$ – напряжение на выходе активного проводника в синфазном режиме, $U_{DM}(t)$ – в дифференциальном режиме.

Для увеличения максимальной длительности помехового импульса выбрана ЦФ, которая реализует минимизацию квадрата разности между максимальным и минимальным значениями временных интервалов [11]. Для 6-проводной структуры:

$$F_{time} = \left(\max\left(\Delta t_1 \div \Delta t_5\right) - \min\left(\Delta t_1 \div \Delta t_5\right) \right)^2.$$
(6)

Для 8-проводной структуры:

$$F_{time} = \left(\max\left(\Delta t_1 \div \Delta t_7\right) - \min\left(\Delta t_1 \div \Delta t_7\right) \right)^2.$$
(7)

Количество особей равно 50, количество поколений – 100, а коэффициент кроссовера – 0,5. Выполнено по 5 запусков ГА, чтобы убедиться в повторяемости результатов.

2. 6-проводная структура

Диапазоны оптимизации параметров поперечного сечения для 6-проводной структуры: w = 11 - 26 мм, s = 3 - 5 мм, $h_1 = 0, 2 - 1$ мм, $h_2 = 3 - 5$ мм. Параметры t = 35 мкм, d = 1 мм, $\varepsilon_{r1} = 10, 2$ $\varepsilon_{r2} = 1$, l = 100 мм в процессе оптимизации не изменяются. Результаты оптимизации по амплитудному критерию в дифференциальном и синфазном режимах приведены в таблицах 1 и 2, а по временному – в таблице 3. Полужирным выделены параметры, обеспечивающие лучший результат. На рис. 6 приведены формы напряжения на выходе 6-проводной структуры, полученные по результатам оптимизации по амплитудному критерию, а на рис. 7 – по временному.

па выходе о-проводной структуры в синфазном режиме.								
Значение	1	2	3	4	5	Отклонение, %		
						· · · · · · · · · · · · · · · · · · ·		
W, MM	26	26	25,94	25,82	25,94	0,69		
S, MM	3,25	4	3,52	3,85	3,57	18,75		
h_1 , мм	0,2	0,2	0,2	0,2	0,2	0		
$h_2,{ m MM}$	4,99	4,87	4,98	4,96	5	2,60		
$U_{ m max}$, м ${ m B}$	13,25	13,42	13,4	13,37	13,27	1,26		
Время, с	35448,8	35441	35381,7	35391,2	35548,8	0,47		

Таблица 1. Результаты минимизации U_{max}

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №5, 2025

на в	на выходе о-проводной структуры в дифференциальном режиме.									
Значение	1	2	3	4	5	Отклонение, %				
W, MM	26	25,06	25,29	26	25,76	3,61				
S, MM	3,92	3,24	3,90	3,75	3,81	17,34				
<i>h</i> ₁ , мм	0,2	0,2	0,2	0,2	0,2	0				
<i>h</i> ₂ , мм	5,00	4,97	4,99	4,97	4,67	6,60				
$U_{ m max},{ m MB}$	13,33	13,74	13,61	13,35	13,24	3,63				
Время, с	34777,4	34866,6	35040,3	34876,6	35830,1	2,93				

Таблица 2. Результаты минимизации U_{max} на выходе 6-проводной структуры в дифференциальном режиме.

Выполнено моделирование 6-проводной структуры с оптимальными параметрами поперечного сечения: для дифференциального режима – w = 25,76 мм, s = 3,81 мм, $h_1 = 0,2$ мм, $h_2 = 4,67$ мм и для синфазного режима – w = 26 мм, s = 3,25 мм, $h_1 = 0,2$ мм, $h_2 = 4,99$ мм.

Рис. 6. Формы напряжения на выходе 6-проводной структуры в дифференциальном (*a*) и синфазном (*б*) режимах при минимизации U_{max}

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №5, 2025

		для о	проводной	төгруктург	л.	
Значение	1	2	3	4	5	Отклонение, %
W, MM	11,05	11	11	11	11,06	0,54
<i>s</i> , mm	3,04	3,10	3,00	3,01	3,03	3,22
h_1 , мм	0,99	1	0,97	0,99	1	3
<i>h</i> ₂ , мм	4,99	5	4,98	4,91	4,89	1,8
$F_{\rm time}$	0,30	0,30	0,31	0,30	0,30	3,22
$ au_1$	4,06	4,06	4,06	4,06	4,06	0
$ au_2$	4,19	4,18	4,18	4,19	4,19	0,24
$ au_3$	9,82	9,81	9,83	9,81	9,81	0,21
$ au_4$	9,91	9,9	9,91	9,9	9,9	0,11
$ au_5$	10,12	10,11	10,12	10,12	10,11	0,10
τ_6	10,28	10,28	10,29	10,28	10,28	0,10
Δt_1 , HC	0,125	0,125	0,125	0,125	0,124	0,8
Δt_2 , HC	5,63	5,62	5,64	5,62	5,62	0,35
Δt_3 , HC	0,088	0,089	0,087	0,087	0,086	3,37
Δt_4 , HC	0,211	0,02	0,2	0,213	0,021	6,11
Δt_5 , HC	0,166	0,016	0,164	0,168	0,017	4,76
Время, с	31715,6	31760,1	31768,5	32241,3	32363,2	2,01

Таблица 3. Результаты минимизации значения *F*time лля 6-проволной структуры.

Для получения форм напряжения на выходе 6-проводной структуры (рис. 7), выбраны лучшие значения оптимизации по критерию минимизации квадрата разности максимального и минимального временных интервалов: w = 11 мм, s = 3,01 мм, $h_1 = 0,99$ мм, $h_2 = 4,91$ мм.

Рис. 7. Формы напряжения на выходе 6-проводной структуры в дифференциальном (...) и синфазном (—) режимах при минимизации *F*_{time}

По результатам оптимизации по амплитудному критерию получены оптимальные параметры, позволяющие для 6-проводной структуры уменьшить

значение U_{maxDM} до 13,24 мВ, а U_{maxCM} до 13,25 мВ, т.е. в среднем в 15 раз меньше по сравнению с U_{max} до оптимизации в обоих режимах. Оптимизация по временному критерию не увеличила разности погонных задержек. Это связано со спецификой геометрических моделей поперечных сечений и обеспечиваемой в них электромагнитной связи.

3. 8-проводная структура

Оптимизация для 8-проводной структуры выполнена аналогично 6-проводной структуре. Диапазоны оптимизации параметров поперечного сечения: w = 15 - 25 мм, s = 6 - 8 мм, $h_1 = 0, 2 - 1$ мм, $h_2 = 1 - 3$ мм. Параметры t = 35 мкм, d = 1 мм, $\varepsilon_{r1} = 10, 2$, $\varepsilon_{r2} = 1$, l = 100 мм в процессе оптимизации не изменяются. Результаты оптимизации по амплитудному критерию приведены в таблицах 4 и 5, а по временному – в таблице 6.

Таблица 4. Результаты минимизации *U*_{max} на выходе 8-проводной структуры в синфазном режиме.

	11	1 / 1		71		
Значение	1	2	3	4	5	Отклонение, %
W, MM	25	25	24,84	24,96	25	0,64
S, MM	7,97	7,94	7,94	7,97	7,79	2,25
$h_1,$ мм	0,2	0,2	0,2	0,2	0,2	0
<i>h</i> ₂ , мм	1,21	1,33	1,16	1,21	1,22	12,78
$U_{ m max}$, м ${ m B}$	12,62	12,63	12,73	12,64	12,65	0,78
Время, с	25472,8	26257,9	27148	27979,5	29312,9	13,1

Таблица 5. Результаты минимизации U_{max} на выходе 8-проводной структуры в дифференциальном режиме

па выходе о проводной структуры в дифференциальном режиме.								
Значение	1	2	3	4	5	Отклонение, %		
W, MM	24,84	24,96	25	25	24,96	0,64		
S, MM	6,09	6,82	7,16	6,15	7,16	14,94		
$h_1,$ мм	0,2	0,2	0,2	0,2	0,2	0		
$h_2,{ m MM}$	3	3	2,95	2,99	2,94	2		
$U_{ m max}$, м ${ m B}$	23,55	23,49	23,56	23,46	23,58	0,5		
Время, с	25570,6	25995,3	25544,4	25990,1	27061,1	5,5		

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №5, 2025

Значение	1	2	3	4	5	Отклонение, %
W, MM	15,2745	15,0784	15,902	15	15,3137	2,04
S, MM	6,10196	6	6	6,12549	6,08627	2,04
<i>h</i> ₁ , мм	0,971765	0,962353	0,996863	0,971765	0,96549	3,14
<i>h</i> ₂ , мм	1,48627	1,47843	1,54118	1,49412	1,47843	4,07
F_{time}	0,068191	0,0677886	0,0675631	0,067476	0,0682506	1,13
$ au_1$	3,57	3,58	3,57	3,58	3,57	0,28
τ_2	4,81	4,82	4,83	4,81	4,81	0,42
$ au_3$	7,32	7,32	7,34	7,33	7,32	0,27
$ au_4$	7,32	7,32	7,34	7,33	7,32	0,27
τ_5	9,93	9,93	9,94	9,92	9,93	0,21
τ_6	10,29	10,29	10,29	10,29	10,29	0
τ_7	10,3	10,3	10,3	10,29	10,3	0,10
$ au_8$	10,3	10,3	10,31	10,3	10,31	0,10
Δt_1 , HC	1,23	1,24	1,25	1,23	1,23	1,6
Δt_2 , нс	2,5	2,5	2,5	2,51	2,51	0,39
Δt_3 , HC	0,00001	0,00001	0,000011	0,00001	0,00001	9,09
Δt_4 , HC	2,61	2,6	2,6	2,59	2,61	0,76
Δt_5 , HC	0,35	0,35	0,35	0,36	0,35	2,77
Δt_6 , HC	0,0074	0,0074	0,0069	0,0077	0,0073	10,38
Δt_7 , HC	0,007	0,0073	0,0076	0,007	0,0069	9,21
Время, с	22935,2	20898,1	21041,3	23131	20894,1	9,65

Таблица 6. Результаты минимизации значения *F*_{time} для 8-проводной структуры.

На рис. 8 приведены формы напряжения на выходе 8-проводной структуры, полученных по результатам оптимизации по амплитудному критерию. Для дифференциального режима использовались следующие оптимальные параметры поперечного сечения: w = 25 мм, s = 6,15 мм, $h_1 = 0,20$ мм, $h_2 = 2,99$ мм. Аналогично для синфазного режима: w = 25 мм, s = 7,97 мм, $h_1 = 0,2$ мм, $h_2 = 1,21$ мм. Для получения форм напряжения на выходе 8-проводной структуры (рис. 9) выбраны лучшие значения оптимизации по критерию минимизации квадрата разности максимального и минимального временных интервалов: w = 15,90 мм, s = 6 мм, $h_1 = 1$ мм, $h_2 = 1,54$ мм.

Рис. 8. Формы напряжения на выходе 8-проводной структуры в дифференциальном (*a*) и синфазном (*б*) режимах при минимизации U_{max}.

Рис. 9. Формы напряжения на выходе 8-проводной структуры в дифференциальном (...) и синфазном (—) режимах при минимизации *F*_{time}.

По результатам оптимизации по амплитудному критерию получены оптимальные параметры, позволяющие для 8-проводной структуры уменьшить значение U_{maxDM} до 23,46 мВ, а U_{maxCM} до 12,62 мВ, т.е. в среднем в 12 раз меньше по сравнению с U_{max} до оптимизации в обоих режимах. Оптимизация по временному критерию, аналогично 6-проводной структуре, не увеличила разности погонных задержек.

4. Матрицы погонных параметров оптимизированных устройств защиты

Для дальнейшего исследования устройств защиты выбраны параметры, полученные в результате оптимизации по амплитудному критерию. Однако так как оптимизация выполнялась для каждого режима по-отдельности, а устройство защиты подразумевает работу в дифференциальном и синфазном режимах одновременно, необходимо выбрать параметры, позволяющие получить минимальное значение U_{max} в обоих режимах. В результате для 6-проводной структуры w = 26 мм, s = 3,5 мм, d = 1 мм, $h_1 = 0,2$ мм, $h_2 = 5$ мм, t = 35 мкм, $\varepsilon_{r1} = 10,2$, $\varepsilon_{r2} = 1$, l = 0,1 м, а для 8-проводной – w = 25 мм, s = 8 мм, d = 1 мм, $h_1 = 0,2$ мм, $h_2 = 2,5$ мм, t = 35 мкм, $\varepsilon_{r1} = 10,2$, $\varepsilon_{r2} = 1$, l = 0,1 м.

Для оптимизированных 6- и 8-проводной структуры вычислены матрицы электростатической (С) и электромагнитной (L) индукций, а также матрицы характеристического импеданса (Zc) и погонных задержек (т) мод в ПО TUSUR.EMC с помощью метода моментов. Для 6-проводной структуры:

$$\mathbf{C} = \begin{bmatrix} 11789,1 & -8,275 & -11770,7 & -0,932 & -2,682 & -1,203 \\ -8,275 & 11789,1 & -2,686 & -2,602 & -1,203 & -2,682 \\ -11770,7 & -2,686 & 11824,2 & -1,203 & -2,602 & -0,932 \\ -0,932 & -2,602 & -1,203 & 11824,2 & -2,686 & -11770,7 \\ -2,682 & -1,203 & -2,602 & -2,686 & 11789,1 & -8,275 \\ -1,203 & -2,682 & -0,932 & -11770,7 & -8,275 & 11789,1 \end{bmatrix} \Pi \Phi/\mathsf{M},$$

$$\mathbf{L} = \begin{bmatrix} 167,4 & 1,389 & 160,178 & 9,388 & 0,791 & 9,566 \\ 1,389 & 9,436 & 1,342 & 0,773 & 0,024 & 0,791 \\ 160,178 & 1,342 & 162,510 & 9,566 & 0,773 & 9,388 \\ 9,388 & 0,773 & 9,566 & 162,510 & 1,342 & 160,178 \\ 0,791 & 0,024 & 0,773 & 1,342 & 9,436 & 1,389 \\ 9,566 & 0,791 & 9,388 & 160,178 & 1,389 & 167,4 \end{bmatrix} \mathbf{H}\Gamma\mathbf{H}/\mathbf{M},$$

$$\mathbf{Zc} = \begin{bmatrix} 48 & 0.132 & 47.324 & 2.594 & 0.074 & 2.609 \\ 0.132 & 0.894 & 0.130 & 0.073 & 0.001 & 0.074 \\ 47.324 & 0.130 & 47.544 & 2.609 & 0.073 & 2.594 \\ 2.594 & 0.073 & 2.609 & 47.544 & 0.130 & 47.324 \\ 0.074 & 0.001 & 0.073 & 0.130 & 0.894 & 0.132 \\ 2.609 & 0.074 & 2.594 & 47.324 & 0.132 & 48 \end{bmatrix} \mathbf{Om}, \mathbf{\tau} = \begin{bmatrix} 3.39831 \\ 3.41276 \\ 10.5258 \\ 10.5281 \\ 10.5617 \\ 10.5893 \end{bmatrix} \mathbf{Hc/M}.$$

Для 8-проводной структуры:

пΦ/м,

	11114,7	-1,111	-11093,8	-1,111	-0,732	-3,014	-0,732	-2,321]
	-1,111	11190,8	-0,392	-0,002	-88,672	-0,319	-0,0007	-0,732
	-11093,8	-0,392	11189,5	-0,392	-0,319	-88,399	-0,319	-3,014
C –	-1,111	-0,002	-0,392	11190,8	-0,0007	-0,319	-88,672	-0,732
U –	-0,732	-88,672	-0,319	-0,0007	11190,8	-0,392	-0,002	-1,111
	-3,014	-0,319	-88,399	-0,319	-0,392	11189,5	-0,392	-11093,8
	-0,732	-0,0007	-0,319	-88,672	-0,002	-0,392	11190,8	-1,111
	-2,321	-0,732	-3,014	-0,732	-1,111	-11093,8	-1,111	11114,7

	335,589	0,492	330,320	0,498	0,482	278,133	0,488	281,575	
L =	0,492	9,225	0,497	0,0009	0,673	0,489	0,0009	0,488	
	330,320	0,497	334,950	0,497	0,490	281,575	0,489	278,133	
	0,498	0,498 0,0009 0,497	9,225	0,0009	0,490	0,673	0,482	πΓπ/м	
	0,482	0,673	0,490	0,0009	9,225	0,497	0,0009	0,498	HI H/M,
	278,133	0,489	281,575	0,490	0,497	334,950	0,497	330,320	
	0,488	0,0009	0,489	0,673	0,0009	0,497	9,225	0,492	
	281,575	0,488	278,133	0,482	0,498	330,320	0,492	335,589	

	95,590	0,050	95,090	0,050	0,048	79,365	0,049	79,044	
Zc =	0,050	0,907	0,050	0,00005	0,036	0,049	0,00005	0,049	
	95,090	0,050	95,524	0,050	0,048	79,044	0,049	79,365	
	0,050	0,00005	0,050	0,907	0,00005	0,048	0,036	0,048	Ом
	0,048	0,036	0,048	0,00005	0,907	0,050	0,00005	0,050	Ом,
	79,365	0,049	79,044	0,048	0,050	95,524	0,050	95,090	
	0,049	0,00005	0,049	0,036	0,00005	0,050	0,907	95,090	
	79,044	0,049	79,365	0,048	0,050	95,090	0,050	95,590	

$$\boldsymbol{\tau} = \begin{bmatrix} 3,36442 \\ 3,49298 \\ 9,82161 \\ 9,82162 \\ 10,4273 \\ 10,4826 \\ 10,4833 \\ 10,4849 \end{bmatrix} \text{ Hc/M.}$$

Из матриц для 6-проводной структуры видно равенство некоторых элементов по главной диагонали: $C_{11} = C_{22} = C = C_{66}$ и $C_{33} = C_{44}$. Также равны некоторые взаимные элементы, в зависимости от расположения относительно земли: $C_{12} = C_{56}$; $C_{13} = C_{46}$; $C_{14} = C_{36}$; $C_{15} = C_{26}$; $C_{16} = C_{25}$; $C_{23} = C_{45}$; $C_{24} = C_{35}$. Исходя из этого, можно сделать вывод о том, что геометрическая модель поперечного сечения является центрально-симметричной. Аналогично из матриц 8-проводной структуры видно равенство элементов по главной диагонали: $C_{11} = C_{88}$; $C_{22} = C_{77}$; $C_{33} = C_{66}$; $C_{44} = C_{55}$ и равенство взаимных элементов: $C_{12} = C_{78} = C_{14} = C_{58}$; $C_{13} = C_{68}$; $C_{15} = C_{17} = C_{48} = C_{28}$; $C_{16} = C_{38}$; $C_{24} = C_{57}$; $C_{25} = C_{47}$; $C_{26} = C_{35} = C_{37} = C_{46}$; $C_{34} = C_{23} = C_{56} = C_{67}$. Таким образом, 8-проводная структура является зеркально-симметричной по горизонтальной оси.

5. Квазистатическое моделирование частотных и временных характеристик оптимизированных устройств защиты

Здесь представлены результаты получения временных откликов и S₂₁ для 6- и 8-проводной структур с оптимизированными параметрами поперечного Частотные сечения. временные характеристики И оптимизированных устройств защиты получены посредством квазистатического моделирования в ПО Advanced Design System (ADS) [12] по вычисленным матрицам L и C. В качестве входного воздействия также использован трапециевидный импульс с длительностями фронта, спада и плоской вершины по 100 пс, так что суммарная длительность входного импульса равна 300 пс. При получении частотных характеристик стоит обратить внимание что устройства защиты являются 4-портовыми. Для получения частотных характеристик в дифференциальном и синфазном режимах использована методика, изложенная в [13], и формулы:

$$Sdd_{21} = \frac{S_{21} - S_{41} - S_{23} + S_{43}}{2},$$
(8)

$$Scc_{21} = \frac{S_{21} + S_{41} + S_{23} + S_{43}}{2}.$$
 (9)

По выражениям (8) и (9) из небалансных характеристик вычисляются балансные характеристики для дифференциального S_{dd21} и синфазного S_{cc21} режимов. На рис. 10 и 11 показаны формы напряжения на выходе 6-проводной структуры и частотная зависимость $|S_{21}|$.

Рис. 11. Частотная зависимость *S*₂₁ 6-проводной структуры в дифференциальном (...) и синфазном (—) режимах.

Из рисунков видно, что на выходе 6-проводной структуры $U_{\text{max}} = 13,33 \text{ мB}$ в синфазном, а в дифференциальном $U_{\text{max}} = 13,15 \text{ мB}$. Частота среза для обоих режимов составила 6 МГц.

На рис. 12 и 13 показаны формы напряжения на выходе 8-проводной структуры и частотная зависимость |S₂₁|.

Рис. 12. Формы напряжения на выходе 8-проводной структуры в дифференциальном (...) и синфазном (—) режимах.

Рис. 13. Частотная зависимость S_{21} устройства защиты в дифференциальном (...) и синфазном (—) режимах.

Из рисунков видно, что на выходе 8-проводной структуры $U_{\text{max}} = 12 \text{ мB}$ в синфазном, а в дифференциальном $U_{\text{max}} = 28,8 \text{ мB}$. Частота среза в синфазном режиме составила 267,7 МГц, а в дифференциальном – 467,30 МГц, соответственно.

Заключение

Таким образом, приведены результаты выбора и обоснования новых устройств защиты от СКИ, работающих в синфазном и дифференциальном режимах. Выбраны 6-проводная и 8-проводная структуры, проводники каждой из которых специально сконфигурированы на общем диэлектрическом основании и объединены в отдельные конструкции, где опорные проводники соединены между собой на ближнем и дальнем концах. Схемы соединений представляют из себя обеспечение холостого хода на ближнем конце пассивных проводников и короткого замыкания – на дальнем. Для реализации режимов воздействия используются два источника э.д.с. $E_{\Gamma}1$ и $E_{\Gamma}2 = 1$ В. В 6-проводной структуре для оптимального ослабления в дифференциальном

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №5, 2025</u>

и синфазном режимах обеспечивается симметрия воздействий, а для 8-проводной структуры – асимметрия. В соответствии с режимом воздействия в 6-проводной структуре в дифференциальном режиме используются моды 1, 3 и 5, а синфазном – моды 2, 4 и 6; в 8-проводной структуре в дифференциальном режиме используются моды 1, 3, 5 и 7, а синфазном – моды 2, 4, 6 и 8.

Оптимизированы параметры поперечных сечений 6- и 8-проводных структур посредством ГА по двум критериям: минимизации амплитуды напряжения на выходе для дифференциального и синфазного режимов по-отдельности И минимизации квадрата разности максимального и минимального временных интервалов. По амплитудному критерию получены оптимальные параметры, позволяющие для 6-проводной структуры уменьшить значение U_{maxDM} до 13,24 мВ, а U_{maxCM} до 13,25 мВ, а 8-проводной – U_{maxDM} до 23,46 мВ, а U_{maxCM} до 12,62 мВ. Оптимизация по временному критерию не увеличила разность погонных задержек. Это связано со спецификой геометрических моделей поперечных сечений и обеспечиваемой в них электромагнитной связи. Для дальнейшего исследования устройств защиты выбраны параметры, обеспечивающие минимумы U_{max} как в дифференциальном, так и синфазном режимах, полученные с учетом влияния параметров.

Вычислены матрицы коэффициентов электростатической и электромагнитной индукции и матрицы погонных задержек мод оптимизированных устройств защиты. Результаты позволили сделать вывод о том, что геометрическая модель поперечного сечения 6-проводной структуры является центрально-симметричной, а 8-проводной - зеркально-симметричной по горизонтальной оси.

По вычисленным матрицам, в ПО ADS вычислены характеристики коэффициента передачи $|S_{21}|$ и временные отклики на воздействие с амплитудой э.д.с 1 В с общей длительностью 300 пс. В результате 6-проводная структура ослабляет входной импульс $K_{\rm CM} = 37,5$ и $K_{\rm DM} = 38$ и частотой среза $f_c = 6$ МГц для обоих режимов, а 8-проводная – $K_{\rm CM} = 41,6$ и $K_{\rm DM} = 21,9$ и частотой среза $f_c = 267,7$ МГц для синфазного режима и $f_c = 467,3$ МГц – для дифференциального. Из анализа частоты среза получено, что 6-проводную структуру можно

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №5, 2025</u>

использовать для защиты цепей питания, а 8-проводную – как для защиты цепей питания, так и сигнальных.

Финансирование: Исследование выполнено за счет гранта Российского научного фонда № 23-79-01216, https://rscf.ru/project/23-79-01216/ в ТУСУРе и при поддержке Минобрнауки России по проекту FEWM-2024-0005.

Литература

- Kučera M., Šebök M. Electromagnetic compatibility analysing of electrical equipment // 2016 Diagnostic of Electrical Machines and Insulating Systems in Electrical Engineering (DEMISEE). – IEEE. – 2016. P. 104-109. https://doi.org/10.1109/DEMISEE.2016.7530476
- Mora, N. et al. Study and classification of potential IEMI sources // System and assessment notes. – 2014. – № 41. – 92 p.
- 3. Колпаков А. ЕМІ и ЕМС Проблемы силовой электроники // Вестник Электроники. – 2018. – № 3(63). – С. 16–26.
- Luo F. et al. Design of a hybrid busbar filter combining a transmission-line busbar filter and a one-turn inductor for DC-fed three-phase motor drive systems // IEEE Transactions on Power Electronics. – 2013. – Vol. 28. – №. 12. – P. 5588-5602. https://doi.org/10.1109/TPEL.2013.2244913
- Gazizov A.T., Zabolotsky A.M., Gazizov T.R. UWB pulse decomposition in simple printed structures // IEEE Transactions on Electromagnetic Compatibility. – 2016. – Vol. 58. – №4. – P.1136–1142. https://www.doi.org/10.1109/TEMC.2016.2548783
- Belousov A. O. et al. UAVs protection and countermeasures in a complex electromagnetic environment // Complexity. 2022. Vol. 2022 №. 1. P. 8539326. https://doi.org/10.1155/2022/8539326

- Lakoza A. M., Kosteletskii V. P., Chernikova E. B. Influence of cross-section geometrical parameters on the structures characteristics protecting in differential and common modes // 2024 IEEE 3rd International Conference on Problems of Informatics, Electronics and Radio Engineering (PIERE). – Novosibirsk, Russia. – 2024. – P. 180-184. https://doi.org/10.1109/PIERE62470.2024.10804968.
- Kuksenko S. P. Preliminary results of TUSUR University project for design of spacecraft power distribution network: EMC simulation // IOP Conference Series: Materials Science and Engineering – IOP Publishing, 2019. – Vol. 560 – №. 012110. – P. 1–7. https://doi.org/10.1088/1757-899X/560/1/012110
- МЭК 61000-2-13. Электромагнитная совместимость: Окружающая среда.
 Электромагнитные среды высокой мощности (НРЕМ). Излучаемые и проводимые. 2005. 44 с.
- 10. Кечиев Л. Н. Проектирование печатных плат для цифровой быстродействующей аппаратуры М.: ООО «Группа ИДТ», 2007. 616 с.
- 11. Черникова Е. Б. Параметрическая оптимизация асимметричных многопроводных линий передачи с учетом комбинационных импульсов // Журнал радиоэлектроники. 2024. №. 6. С. 1–23. https://doi.org/10.30898/1684-1719.2024.6.11
- 12. PathWave Advanced Design System (ADS). URL: https://www.keysight.com/ru/ru/products/software/pathwavedesign-software/path wave-advanced-design-system.html (дата обращения: 18.09.2024).
- Dunsmore J. P. Handbook of microwave component measurements: with advanced VNA technique / J. P. Dunsmore. – John Wiley & Sons. – 2020. – 848 p.

Для цитирования:

Костелецкий В.П., Черникова Е.Б., Лакоза А.М. Оптимизация параметров поперечного сечения устройств защиты от сверхкоротких импульсов, работающих в дифференциальном и синфазном режимах. // Журнал радиоэлектроники. – 2025. – №. 5. https://doi.org/10.30898/1684-1719.2025.5.2