Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹5
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.5.9
Enrichment of the radiation spectrum
of an electron generator with passive mode
locking in a hard excitation regime
M.N. Vilkov, N.S. Ginzburg, I.V. Zotova, S.V. Samsonov, A.S. Sergeev
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics RAS,
603950, Russia, Nizhny Novgorod, Ul'yanov St., 46
The paper was received May 23, 2025.
Abstract. In this paper, we analyze the possibility of significant enrichment of the output radiation spectrum of an electronic oscillator with passive mode locking, including a helical gyro-TWT of the millimeter range and a cyclotron resonance absorber. To do this, it is necessary to implement a hard start of the oscillator, when a single electromagnetic pulse circulates along the feedback circuit, while in the soft excitation regime there are many such pulses. The possibility of a hard start of the oscillator with a central frequency of 33.5 GHz by a subnanosecond pulse at a frequency of 38 GHz from a single-pass BWO fed by a RADAN driver is investigated. The obtained data will be used in experiments on the implementation of a hard regime of generating powerful subnanosecond pulses based on passive mode locking.
Key words: short pulse generation, passive mode locking, hard excitation regime, Ka-band, frequency comb.
Financing: This work was supported by the Russian Science Foundation, grant No. 23-12-00291.
Corresponding author: Michael Nikolaevich Vilkov, vilkovmn@ipfran.ru
References
1. Krupnov A.F. et al. Technique of broadband measurements of frequency conversion efficiency for each harmonique in frequency multipliers up to terahertz range // International Journal of Infrared and Millimeter Waves. – 2000. – V. 21. – P. 343-354.
2. Parshin V.V. et al. Modern resonator spectroscopy at submillimeter wavelengths // IEEE Sensors Journal. – 2012. – V. 13. – ¹. P. – P. 18-23.
3. Kryukov P.G. Ultrashort-pulse lasers // Quantum electronics. – 2001. – V. 31. – ¹. 2. – P. 95.
4. Keller U. Recent developments in compact ultrafast lasers // nature. – 2003. – V. 424. – ¹. 6950. – P. 831-838.
5. Brabec T. et al. Kerr lens mode locking // Optics letters. – 1992. – V. 17. – ¹. 18. – P. 1292-1294.
6. Keller U. et al. Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber // Optics letters. – 1992. – V. 17. – ¹. 7. – P. 505-507.
7. Ginzburg N.S. et al. Generation of “gigantic” ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop // Physics of Plasmas. – 2016. – V. 23. – ¹. 5 – P. 050702.
8. Ginzburg N.S. et al. Generation of trains of ultrashort microwave pulses by two coupled helical gyro-TWTs operating in regimes of amplification and nonlinear absorption // Physics of Plasmas. – 2017. – V. 24. – ¹. 2. – P.2334-2339.
9. Ginzburg N.S. et al. Dissipative solitons in electron oscillators with a saturable absorber // Physics of Plasmas. – 2018. – V. 25. – ¹. 9. – P.093111.
10. Ginzburg N.S. et al. Generation of periodic high-power ultrashort pulse sequences in a chain of coupled traveling-wave tubes operating in the regimes of amplification and nonlinear Kompfner suppression // Technical Physics Letters. – 2017. – V. 43. – P. 842-845.
11. Ginzburg N.S. et al. Nonlinear cyclotron resonance absorber for a microwave subnanosecond pulse generator powered by a helical-waveguide gyrotron traveling-wave tube // Physical Review Applied. – 2020. – V. 13. – ¹. 4. – P. 044033.
12. Gaponov A.V., Petelin M.I., Yulpatov V.K. The induced radiation of excited classical oscillators and its use in high-frequency electronics // Radiophysics and Quantum Electronics. – 1967. – V. 10. – ¹. 9. – P. 794-813.
13. Ginzburg N.S. et al. Ka-band 100-kW subnanosecond pulse generator mode-locked by a nonlinear cyclotron resonance absorber // Physical Review Applied. – 2021. – V. 16. – ¹. 5. – P. 054045.
14. Denisov G.G. et al. Gyrotron traveling wave amplifier with a helical interaction waveguide // Physical review letters. – 1998. – V. 81. – ¹. 25. – P. 5680.
15. Bratman V.L. et al. High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide // Physical Review Letters. – 2000. – V. 84. – ¹. 12. – P. 2746.
16. Coen S., Erkintalo M. Universal scaling laws of Kerr frequency combs // Optics letters. – 2013. – V. 38. – ¹. 11. – P. 1790-1792.
17. Rozanov N.N. et al. Dissipative optical solitons // PHYSICS USPEKHI C/C OF USPEKHI FIZICHESKIKH NAUK. – 2000. – V. 43. – ¹. 4. – P. 421-424.
18. Vladimirov A.G. et al. Bifurcation analysis of laser autosolitons // Quantum Electronics. – 1997. – V. 27. – ¹. 11. – P. 949.
19. Korovin S.D. et al. Generation of Cherenkov superradiance pulses with a peak power exceeding the power of the driving short electron beam // Physical Review E–Statistical, Nonlinear, and Soft Matter Physics. – 2006. – V. 74. – ¹. 1. – P. 016501.
20. Äåíèñîâ Ã.Ã., Ðåçíèêîâ Ì.Ã. Ãîôðèðîâàííûå öèëèíäðè÷åñêèå ðåçîíàòîðû äëÿ êîðîòêîâîëíîâûõ ðåëÿòèâèñòñêèõ ÑÂ× ãåíåðàòîðîâ // Èçâ. ÂÓÇîâ. Ðàäèîôèçèêà. – 1982. – Ò.25. – ¹5. – Ñ.562-569.
21. Ginzburg N.S. et al. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide // Physics of Plasmas. – 2015. – V. 22. – ¹. 11. – P.113111.
22. Ginzburg N.S., Nusinovich G.S., Zavolsky N.A. Theory of non-stationary processes in gyrotrons with low Q resonators // International Journal of Electronics Theoretical and Experimental. – 1986. – V. 61. – ¹. 6. – P. 881-894.
23. Ginzburg N.S. et al. Generation of a periodic sequence of high-power ultrashort pulses in a chain of coupled backward-wave and traveling-wave tubes operating in the regimes of amplification and nonlinear Kompfner suppression // Technical Physics. – 2018. – V. 63. – P. 1205-1211.
For citation:
Vilkov M.N., Ginzburg N.S., Zotova I.V., Samsonov S.V., Sergeev A.S. Enrichment of the radiation spectrum of an electron generator with passive mode locking in a hard excitation regime // Journal of Radio Electronics. – 2025. – ¹. 5. https://doi.org/10.30898/1684-1719.2025.5.9 (In Russian)