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Abstract: The paper presents the latest results of devejapenv methods, based on
Multiscale Correlation Analysis for bio-medical s&js processing. It is shown that
in case a signal has the form of repeated waveepulCA naturally leads to the
technique previously introduced by the authors @allikd the analytical spectra. Itis
also demonstrated, that detecting typical MCA fragte by appropriate patterns,
gives the possibility to significantly improve thiepetition estimation. The paper
discusses the application of these methods to tbklgms of the blood pressure
rhythm monitoring. In relation to monitoring BP seraoharacteristics of the method
are under discussion.
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The great progress of the modern technological viaton in the field of
computer, communication and multimedia gives hope $imilar impressive
advances in new medical devices and instrumentsrgeon. Therefore we observe
now an unprecedented growth of interest in suchrungentation, especially in
compact mobile medical devices (gadgetry). Such emodtools will provide
undoubtedly principally new and potentially unligdt health services to the wide

range of people.
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Medicine becomes now a considerably data-rich seieihe power of above
mentioned technologies enables us to measure aodegwy a lot of signals,
parameters and other data that characterize thenpdtinctional status. It will
significantly improve the quality of treatment, pein diagnosis and patient
monitoring, and allow some patients to stay honstemd of hospital bed thanks to
remote monitoring possibility. It makes true thenogn of Norbert Wiener — the
father of cybernetics — whorote in [1]: "As far back as four years ago, thmeugp of
scientists and myself had already become awarbeoessential unity of the set of
problems centering about communication, contrad, statistical mechanics, whether

in the machine or in living tissue." So Wiener'sion today is reality.

After the new hardware comes the need for appr@psaftware, which is
equally important as it helps in linking the fumctality of the parts of hardware,
grows over and over. It is important to outlineattit concerns not only the system
software such as drivers, interfaces and utilitibat also the special purpose
applications, designed for data analysis, automatiagnostics, forecasting,
interoperability scenarios, etc. It should be steesthat the most specific of special
purpose applications are those, which are desforagrimary processing of acquired
data (digital signal processing, DSP). Specifisitiespecial features of such
processing determine the most adequate informatxtnaction and irultima analysi

specificity of the medical device.

It should be also noted that, despite impressiogness in the development of
microprocessor technology, and the expansion ofjraraming mobile devices
opportunities for the programmability of personainputers, the task of developing a
robust, adequate and effective DSP algorithms aathads is still in the field of
attention.

In this paper we present the latest results of Iopusg new methods of bio-
medical signals processing, based on Multiscaledglairon Analysis (MCA) [2,3].
We show that in case of signals having a form peated wave pulses (motives),

MCA leads naturally to the technique previouslyaduced by the authors and called
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the analytical spectra (AS) [4,5]. We also demaistrthat detecting typical MCA
fragments by appropriate patterns, gives us thsilpby to significantly improve
the periodicity estimates. In the center of dismusss the application of these
methods to the problems of the arterial blood pnesgfABP) rhythm monitoring

automation.

The problem of ABP rhythm monitoring is very dianito the well-known
problem of instantaneous heart rate estimation frelectrocardiogram (ECG)
waveforms [5], since both signals are due to thediaa cyclic contractions.
However, since ABP and ECG reflect different asp@dtthe cardiovascular system
operating — ECG reflects the heart electrical @gtivand the ABP — mechanical
response to this excitation, their repeated wawefoare markedly different (see

Fig.1), and therefore the estimating proceduresidéer essentially.
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Fig.1. Normal arterial blood pressure waveform &Bdl its relation to the ECG wave
(A). Record mimic2db/a40008 from MIMIC Il Wavefor@B, v2 [6]; PhysioNet

ATM screenshot.

The systemic ABP waveform results from ejectionbédod from the left
ventricle into the aorta during systole, followegd feripheral arterial runoff of this
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stroke volume during diastole (Fig.1). The systobenponents follow the ECG wave
(with characteristic R—peak) and consist of a sfgegsure upstroke, peak (PP), and
decline and correspond to the period of left ventar systolic ejection. Note that the
systolic upstroke of the artery pressure trace do&s appear for 120 to 180
milliseconds after inscription of the ECG R—peakisTinterval reflects the sum of
times required for spread of left ventricular cantron, aortic valve opening, left

ventricular ejection, etc.

Thanks to such a feature of the ECG signal as dRapggaks (or rather whole
QRS complexes), already in the early years of hedet detection, an algorithmic
structure was developed that is now shared by nadgyrithms [7]. As a rule it is
divided into a preprocessing and rate estimatiagestincluding peak detection and
decision logic. Due to the fact that ABP waveforoges not contain as well expressed
peak as ECG does, moreover, its pressure peakc@PPyften be greatly deformed
(depending on measuring conditions), using algowgisimilar in structure with QRS

detecting generally does not bring success [8,9].

Fortunately, there are other effective approachessdlve the aforesaid
problem. We have shown previously [5] that our Nglhle Correlation Analysis
(MCA) method [2,3] is a very effective approachbio-medical signal processing if
it contains a set of repeating events (motivese MCA basic tool is a symmetric
estimationR(z | t) of a signal two-dimensional autocorrelation fumct (ACF),
which in the simplest case has the form:

R.(7T]t) = lt+}/>2<(t'+ r/2)x(t'-1/2)dt", (1)

t-7/2

wherex is one-dimensional source signak current time (the time moment under
analysis),r — variable (multi) scale. An example of multi-scA€F (1) for a real

ABP signal is shown in Fig.2.

Fig.2 clearly demonstrates that ACF (1) has sidekpecorresponding to the
local (for time momentt) rhythm characteristic times [3] (first peak laoat

corresponds to rhythm period, second — to doubl®gbeetc.). So, positions of these
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peaks can be utilized as rhythm period estimatgead of maxima of source signal.
The advantage of ACF (1) is that it can be formedhe small signal basis equal to
doubled maximal scale whose value can be assigned, for example, irsdc5 The
traditional ACF estimates usually need a much bigggnal base to avoid peaks
smoothing due to the rhythm variability.
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Fig.2. Real ABP signal fragment (A) and its ACF (B) some time momernt
highlighted by arrow

So in order to have automatically generated loealbg estimation, we need to
determine reliably the position of ACF (1) side kgaOur experience has shown that
direct peaks detection by means of ACF maximumcéesr not a robust procedure
because autocorrelation (1) is a multimodal fumctiduch more stable and reliable
is the maximum detection by means of the genexhlggectrum of ACF (Fig.3).

Generalized spectrunts(z| t,o) represents the ACF decomposition in window
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functions (patterns)(z’ | 7,0) having a form of a Morlaix wavelet. In contrastthe
classical wavelet analysis we consider as specargble window position instead
of scaleo:

G(r |t,0) = [W(r'|7,0)R (r]t)dT
0 : (2)

1 — 1 (. __ 2 2 L
W(r|r,a)—\/?exp( (r'-1)%/ 0?)codm(r*-1)/ 0)

An example of ACF (1) shown on the background ofcs@ml components
{W('| 7,0)} and resulting generalized spectri(| t,oc) are presented in Fig.3, (A)

and (B) consequently.
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Fig.3. ACF (Fig.2) with a set of spectral windowg @nd resulting generalized
spectrum (B).
Applying twice convolution theorem for the Fourigansform, it is easy in

approximatiorr > ¢ to get a different representation of the spectf®2mn

6



JOURNAL OF RADIO ELECTRONICS, N11, 2014

G(r.011) = Re [ Ja W)y ) -
X exr(— P (ov -1 2)2)exp(2n' v)dv

Ve (V) = T X(t +t) exp(-2mv t")dt’
where 0 _ (4)

Vo (V) = [ X(t —t') exp(~273 v t')dlt

0

are analytic spectra (AS), introduced and discussgt].

Numerical realization of the spectrum computingoathm (3) does not cause
any problems. Obviously it is the inverse Fouriansform from the weighted by
Gaussian window product of analytical spectra\i#)ich, in turn, are the result of a
Fourier transform of local signal futurg(t+t') and local signal pask(t-t’ )
consequently. Using for Fourier transformationsfdst algorithms (FFT), makes the
whole procedure (3) of the spectrum computationdasvell. In addition, as mention
above, the rhythm estimation on the base of gamethbpectrum (3) is also robust,

with good accuracy, even in a considerable noiseitons.
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