"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 11, 2017

contents             full textpdf   

Parametric enhancement of SERS by phonons of metallic plasmonic structures

 

V. Yu. Shishkov 1,2,3, E. S. Andrianov 1,2, A. A. Pukhov 1,2,3, A. P. Vinogradov 1,2,3

1 Dukhov Research Institute of Automatics, Suschevskaya st. 22, Moscow 127055, Russia

2 Moscow Institute of Physics and Technology, Institutskiy lane 9, Dolgoprudnyi Moscoe region, 141700, Russia

3 Institute for Theoretical and Applied Electromagnetics of RAS, Uzhorskaya st. 13, Moscow 125412, Russia

 

The paper is received on November 9, 2017

 

Abstract. The Raman scattering is inelastic process when photon scatters on the molecule or a group of the molecules and changes its frequency. The frequency shift of the photon carries the information about the oscillation degreases of freedom of the molecule. In particular, the photon can gain or lose energy that equal to the energy of the one phonon of the molecule. If the molecule is placed near to the metal surface then the Raman scattering dramatically increases. This effect is called SERS. The spectroscopy based on this effect is applied in material sciences, nanotechnology, chemistry and even biology. In this paper enhancement of SERS effect by the phonons of the metal substrate is studied. Since the size and shape of the plasmonic particle is very small (about 30 nm) at room temperature the particle is in the near liquid state and can easily change its shape under the influence of the phonons. The periodic shape changing causes the modulation of the interaction constant between the molecule and the plasmon. Numerical calculations show that when the modulation frequency is close to the oscillation frequency of the molecule, the modulation depth of few percent leads to possibility of an enhancement of SERS signal by the order of magnitude.

Keywords: Raman scattering, SERS, phonon, plasmon.

References

1. V. M. Shalaev, A. K. Sarychev. Nonlinear optics of random metal-dielectric films.  Physical Review B.  1998.  Vol. 57. No. 20. pp. 13265.

2. B. Pettinger et al. Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules.  Annual review of physical chemistry.  2012.  Vol. 63.  pp. 379-399.

3. B. Sharma et al. High-performance SERS substrates: Advances and challenges.  MRS bulletin.  2013.  Vol. 38.  No. 8. pp. 615-624.

4. S. Jiang et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering.  Nature nanotechnology.  2015.  Vol. 10. No. 10. pp. 865-869.

5. X. M. Qian, S. M. Nie. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical application.  Chemical Society Reviews.  2008.  Vol. 37. No. 5.  pp. 912-920.

6. M. Fleischmann, P. J. Hendra, A. J. McQuillan. Raman spectra of pyridine adsorbed at a silver electrod.  Chemical Physics Letters.  1974.  Vol. 26. No. 2.  pp. 163-166.

7. D. L. Jeanmaire, R. P. Van Duyne. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode.  Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.  1977. Vol. 84. No. 1. pp. 1-20.

8. J. M. Atkin, M. B. Raschke. Techniques: Optical spectroscopy goes intramolecula.  Nature.  2013. Vol. 498. No. 7452. pp. 44-45.

9. K. Kneipp et al. Single molecule detection using surface-enhanced Raman scattering (SERS.  Physical review letters.  1997. Vol. 78. No. 9. pp. 1667.

10. Y. Luo, A. Aubry, J. B. Pendry. Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: a transformation optics approach.  Physical Review B.  2011. Vol. 83. No. 15. pp. 155422.

11. H. Xu et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering.  Physical Review E.  2000.  Vol. 62. No. 3. pp. 4318.

12. M. Moskovits. Surface‐enhanced Raman spectroscopy: a brief retrospective.  Journal of Raman Spectroscopy.  2005. Vol. 36.  No. 6‐7. pp. 485-496.

13. C. Ciracì et al. Probing the ultimate limits of plasmonic enhancement.  Science.  2012. Vol. 337. No. 6098. pp. 1072-1074.

14. L. Tong, H. Xu, M. Käll. Nanogaps for SERS application.  Mrs Bulletin.  2014.  Vol. 39. No. 2. pp. 163-168.

15. R. C. Maher et al. Stokes/anti-Stokes anomalies under surface enhanced Raman scattering condition.  The Journal of chemical physics.  2004. Vol. 120. No. 24. pp. 11746-11753.

16. D. N. Klyshko. Correlation between the Stokes and anti-Stokes components in inelastic scattering of light.  Soviet Journal of Quantum Electronics.  1977. Vol. 7.  No. 6.  pp. 755.

17. C. A. Parra-Murillo et al. Stokes–anti-Stokes correlation in the inelastic scattering of light by matter and generalization of the Bose-Einstein population function.  Physical Review B.  2016.  Vol. 93. No. 12.  pp. 125141.

18. A. Jorio et al. Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene.  Nano letters.  2014.  Vol. 14.  No. 10.  pp. 5687-5692.

19. E. C. Le Ru, P. G. Etchegoin. Vibrational pumping and heating under SERS conditions: fact or myth?  Faraday discussions.  2006.  Vol. 132.  pp. 63-75.

20. P. Roelli et al. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering.  Nature nanotechnology.  2016.  Vol. 11. No. 2. pp. 164-169.

21. M. K. Schmidt et al. Quantum mechanical description of Raman scattering from molecules in plasmonic cavities.  ACS nano.  2016. Vol. 10. No. 6. pp. 6291-6298.

22. T. J. Kippenberg, K. J. Vahala. Cavity optomechanics: back-action at the mesoscale.  Science.  2008.  Vol. 321. No. 5893. pp. 1172-1176.

23. M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics.  Reviews of Modern Physics.  2014. Vol. 86. No. 4. pp. 1391.

24. R. Esteban, J. Aizpurua, G. W. Bryant. Strong coupling of single emitters interacting with phononic infrared antennae.  New Journal of Physics.  2014. Vol. 16. No. 1. pp. 013052.

25. E. Waks, D. Sridharan. Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter.  Physical Review A.  2010. Vol. 82.  No. 4. pp. 043845.

26. E. J. Blackie, E. C. L. Ru, P. G. Etchegoin. Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules.  Journal of the American Chemical Society.  2009. Vol. 131. No. 40. pp. 14466-14472.

27. D. Bougeard, K. S. Smirnov. Calculation of off‐resonance Raman scattering intensities with parametric models.  Journal of Raman spectroscopy.  2009. Vol. 40. No. 12. pp. 1704-1719.

28. M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity Optomechanics: Nano-and Micromechanical Resonators Interacting with Light, Quantum Science and Technology. Springer, 2014.

29. M. K. Schmidt et al. Quantum mechanical description of Raman scattering from molecules in plasmonic cavities.  ACS nano.  2016. Vol. 10. No. 6. pp. 6291-6298.

30. F. Benz et al. Single-molecule optomechanics in “picocavities”.  Science.  2016. Vol. 354. No. 6313. pp. 726-729.

31. W. Zhu, K. B. Crozier. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.  Nature communications. 2014. Vol. 5. pp. 5228.

32. M. K. Schmidt et al. Linking classical and molecular optomechanics descriptions of SERS.  Faraday Discussions.  2017.

33. E. A. Pozzi et al. Operational Regimes in Picosecond and Femtosecond Pulse-Excited Ultrahigh Vacuum SERS.  The journal of physical chemistry letters. 2016.  Vol. 7. No. 15.  pp. 2971-2976.

 

For citation:

V. Yu. Shishkov, E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov. Parametric enhancement of SERS by phonons of metallic plasmonic structures. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 11. Available at http://jre.cplire.ru/jre/nov17/11/text.pdf. (In Russian)