"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 11, 2017

contents             full textpdf   

Methods and devices of high resolution terahertz spectroscopy for analytical applications

 

V. L.Vaks, E. G. Domracheva, M. B.  Chernyaeva

Institute for Physics of Microstructures RAS, 603950, Nizhny Novgorod, GSP-105

 

The paper is received on November 14, 2017

 

Abstract. This paper is devoted to using high resolution microwave and terahertz spectroscopy for solving various problems of analytical chemistry, biology, medicine, astrophysics, safety etc. The main types of devices for high resolution terahertz spectroscopy are described. Spectrometers with phase switching and fast frequency sweeping as well as radiation sources based on microwave generators with frequency multiplying, backward wave oscillator, quantum cascade lasers are presented. The two-channel THz spectrometer and combined subTHz-THz-IR spectrometer  as a new analytical tool are proposed. Some experimental results of using the high resolution terahertz spectroscopy for various analytical applications are cited. The results of exhaled breath spectroscopic investigations for non-invasive medical diagnostics of diabetes and other diseases, as well as for monitoring the efficiency of radiotherapy on dynamics of NO concentration are presented. The results of studying the THz absorption spectra for gaseous phase of high energy substances and products of their natural and thermal decomposition have been presented. The decomposition products, being potential markers for detecting the high energy substances in atmosphere in real-time mode, have been revealed. The special consideration is given to improving the sensitivity of terahertz spectral analysis. The development of semiconductor technology will allow to achieve a high level for production of the radiation sources and detectors for terahertz spectroscopy. Developing the tiny and easy-to-use devices based on semiconductor electronics being combined radiation sources for different frequency ranges may be a new direction of devices design. This may result in a new analytical method of spectral analysis for fundamental and applied research.

Key words: high resolution terahertz spectroscopy, quantum cascade laser, multicomponent gas mixture, absorption spectrum.

References

1.     J. El Haddad, B. Bousquet, et al., Review in terahertz spectral analysis. Trends in Analytical Chemistry, 2013, Vol.44, pp.98-105.

2.     G. Zhao, R.N. Schouten, et al., Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter.  Rev.Sci.Instr., 2002, Vol.73, pp.1715-1721.

3.     M.C. Hoffmann, K-L. Yeh, et al., Fiber laser pumped high average power single-cycle terahertz pulse source.  Appl.Phys.Lett., 2008, Vol.93, pp.141107 (1-2).

4.     J. Ekkers, W.H. Flygare, Pulsed microwave Fourier transform spectrometer.  Rev.Sci.Instr., 1976, Vol.47, pp.448-454.

5.     T.J. Balle, W.H. Flygare, Fabry Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source.  Rev.Sci.Instr., 1981, Vol.52, pp.33-45.

6.     J.C. McGurk, T.G. Schmalz, et al., Fast passage in rotational spectroscopy: Theory and experiment.  J.Chem.Phys., 1974, Vol.60, pp.4181-4188.

7.     V.V. Khodos, D.A. Ryndyk, et al. Fast passage microwave molecular spectroscopy with frequency sweeping.  Eur.Phys.J.Appl.Phys., 2004, Vol.25, pp.203-208.

8.     V.L.Vaks, A.B.Brailovsky, V.V.Khodos. Millimeter Range Spectrometer with Phase Switching – Novel Method for Reaching of the Top Sensitivity.  Infrared & Millimeter Waves, 1999, Vol. 20(5), p. 883-896.

9.     Vaks V.L., Domracheva E.G., Nikiforov S.D., Sobakinskaya E.A., Chernyaeva M.B., The application of microwave nonstationary spectroscopy for noninvasive medical diagnostics.  Radiophys Quantum Electronics, 2008, 51(6), pp.493–498.

10.           S. Mata, I. Peña, et al., A broadband Fourier-transform microwave spectrometer with laser ablation source: The rotational spectrum of nicotinic acid.  J.of Mol.Spectroscopy, 2012, Vol.280, pp.91–96.

11.           J.-U. Grabow, E. Samuel Palmer, et al., Supersonic-jet cryogenic-resonator coaxially oriented beam-resonator arrangement Fourier transform microwave spectrometer.  Rev. Sci.Instr., 2005, Vol.76, pp.093106 (1-11).

12.           Virginia Diodes, Inc. designs and produces millimeter wave and Terahertz devices, components and systems. Online resource. Available at http://vadiodes.com/index.php/en/

13.           E. Gerecht, K.O. Douglass, et al., Chirped-pulse terahertz spectroscopy for broadband trace gas sensing. Opt.Express, 2011, Vol.19, pp.8973-8984.

14.           J.L. Neill, B.J. Harris, et al., Pure rotational spectrometers for trace-level VOC detection and chemical sensing. Next-Generation Spectroscopic Technology.  Proc. of SPIE, 2014, Vol. 9101, pp.91010B (1-9).

15.           G. Cazzoli, C. Puzzarini, et al., Pressure-broadening in the THz frequency region: the 1.113 THz line of Water. J.Quant.Spectrosc.Radiat.Transf., 2008, Vol.109, pp.1563-1574.

16.           V.L. Vaks, A.N. Panin, et al., Nonstationary spectroscopy of the 1–2.5 THz frequency band with the use of solid-state devices.  Radiophysics and Quant. Electronics, 2009, Vol.52, pp.511-517.

17.           V. Vaks, High-Precise Spectrometry of the Terahertz Frequency Range: The Methods, Approaches and Applications.  J. of Infrared, Millimeter and Terahertz Waves, 2012, Vol.33, pp.43-53.

18.           H. Yuan, X. Ge, et al., Terahertz Wave Two-dimensional Transmission Imaging with a Backward Wave Oscillator.  Proceed. of SPIE, 2009, Vol.7158, pp.71580T(1-5).

19.           L.H. Coudert, S.P. Belov, et al., Submillimeter spectrum and analysis of vibrational and hyperfine coupling effects in (HI)2Chem.Phys.Lett., 2009, Vol.482, pp.180–188.

20.           V. Vaks, E. Domracheva, et al., Sub-THz Spectroscopy for Security Related Gas Detection, Chapter 24 in: M.F. Pereira, O. Shulika (Eds.), TeraMIR: Detection of Explosives and CBRN (Using Terahertz), NATO Science for Peace and Security Series B: Physics and Biophysics - Springer Science+Business Media Dordrecht - 2014, pp. 189-196.

21.           A.A.Yablokov, V.A.Anfertev, et al., Two-Frequency THz Spectroscopy for Analytical and Dynamical Research.  IEEE Trans. on Terahertz Science and Technology, 2015, Vol.5, pp.845 - 851.

22.           V.L.Vaks, E.G.Domracheva, E.A.Sobakinskaya, M.B.Chernyaeva, Exhaled breath analysis: physical methods, instruments, and medical diagnostics.  Physics – Uspekhi, 2014, Vol. 57(7), p. 684-701.

23.           E.Peytavit, S.Lepilliet, et al., Milliwatt-level output power in the sub-terahertz range generated by photomixing in a GaAs photoconductor.  Appl.Phys.Lett., 2011, Vol.99, pp.223508 (1-3).

24.           S.Eliet, M.-A.Martin, et al., Doppler limited rotational transitions of OH and SH radicals measured by continuous-wave terahertz photomixing.  J. of Molec.Struct., 2011, Vol.1006, pp.13–19.

25.           Belkin, M. et al.: Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation. Appl. Phys. Lett.., 2008, Vol. 92, p. 201101. 

26.           Hayton, D. J. et al.: Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer. Appl. Phys. Lett.,  2013, Vol. 103,  p. 051115.

27.           V.L.Vaks, E.Domracheva, E.Sobakinskaya, M.Chernyaeva Upgrading the sensitivity of spectroscopy gas analysis with application of supersonic molecular beams.  Journal of Applied Physics, 2012, Vol. 111, p. 074903(1-6).

28.           V.Vaks. Multichannel subTHz-THz-IR spectroscopy with using quantum-cascade lasers for analytical applications// The 25th International Conference on Advanced Laser Technologies [ALT'17], Busan, Korea, Book of abstracts, p.2, 2017

29.           G. Cazzoli, C. Puzzarini, The rotational spectrum of hydrogen sulfide: The H233S and H232S isotopologues.  J. of Molec.Spectr., 2014, Vol.298, pp.31–37.

30.           B.J. Drouin, S. Yu, et al., Terahertz spectroscopy for space applications: 2.5–2.7 THz spectra of HD, H2O and NH3. J. of Molec.Struct., 2011, Vol.1006, pp.2–12.

31.           C. Cabezas, S. Mata, et al., LA-MB-FTMW spectroscopy of AlCCH and AgCCH with a discharge source.  J. of Molec.Spectr., 2012, Vol.278, pp.31–34.

32.           I. Haykal, L. Margulès, et al., The cm-, mm-, and sub-mm-wave Spectrum of Allyl Isocyanide and Radioastronomical Observations in Orion KL and the SgrB2 Line Surveys.  The Astrophys. Journal, 2013, Vol.777, p.120.

33.           H. Møllendal, L. Margules, et al., Rotational spectrum of a chiral amino acid precursor, 2-aminopropionitrile, and searches for it in Sagittarius B2(N).  A&A, 2012, Vol.538, pp.A51 (1-14), doi: 10.1051/0004-6361/201116838

34.           C. Puzzarini, A. Ali, et al., Accurate spectroscopic characterization of protonated oxirane: a potential prebiotic species in Titan's atmosphere.  The Astrophys. Journal, 2014, Vol.792, p.118.

35.           V.L.Vaks, E.G.Domracheva, et.al., Using the methods and facilities of nonsteady-state spectroscopy of the subterahertz and terahertz frequency ranges for noninvasive medical diagnosis.  Journal of Optical Technology, 2012, Vol. 79(2), pp. 66–69.

36.           V.L.Vaks, E.G.Domracheva, et al., Multifrequency high precise subTHz-THz-IR spectroscopy for exhaled breath research.  Terahertz Emitters, Receivers, and Applications VII, Proc.of SPIE, 2016, Vol. 9934, p.99340E.

37.           V.L.Vaks, E.G.Domracheva, et.al., Non-stationary high resolution THz spectroscopy for solution of medical and biological problems.  Zhurnal Radioelektroniki — Journal of Radio Electronics, 2014, No. 1, Available at  http://jre.cplire.ru/jre/jan14/15/text.pdf  (In Russian)

38.         de Lange, G., Birk, M., Boersma, D., Dercksen, J., Dmitriev, P., et al., including Ermakov, A.B., Golstein, H., Hoogeveen, R.W.M., de Jong, L., Khudchenko, A.V., Kinev, N.V., Kiselev, O.S., van Kuik, B., de Lange, A., van Rantwijk, J., Selig, A.M., de Vries, E., Yagoubov, P.A., Koshelets, V.P., "Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder", Superconductor Science and Technology, 23, 045106, 2010, doi:10.1088/0953-2048/23/4/045016

39.           V P Koshelets, A B Ermakov, et. al., Superconducting integrated terahertz receivers.  Journal of Physics: Conference Series 486 (2014) 012026 (1-2)

40.           C. He, W. Dong, S. Jingling. Study of atmospheric pollution using terahertz wave.  Infrared, Millimeter Wave, and Terahertz Technologies, Proc.of SPIE, 2010, Vol.7854, p.78542J (1-10),

41.           R.R.Bousquet, P.M.Chu, et al., Trends in microwave spectroscopy for the detection of chemical agents. Sensors Journal, IEEE, 2005, Vol.5, pp.656–664.

42.           A. Cuisset, I. Smirnova, et al., Gas phase THz spectroscopy of toxic agent simulant compounds using the AILES synchrotron beamline.  AIP Conf. Proc., 2009, Vol.1214, pp.85-87, 2010.

43.           V.L.Vaks, E.G.Domracheva, et al., Analysis of lewisite decomposition products with use of subterahertz spectroscopy method.   Atmospheric and Oceanic Optics, 2013, Vol. 26(1), pp. 1-4.

44.           V.L.Vaks, E.G.Domracheva, et al., Methods and approaches of high resolution spectroscopy for analytical applications.  Opt.Quant.Electron., 2017, Vol.49, p.239.

 

For citation:

V.L.Vaks, E.G.Domracheva, M.B.Chernyaeva. Methods and devices of high resolution terahertz spectroscopy for analytical applications. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 11. Available at http://jre.cplire.ru/jre/nov17/14/text.pdf. (In Russian)