"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 11, 2017

contents             full textpdf   

Method of diagnostics of layered structures in the atmosphere and ionosphere during occultation

 

A. L. Gavrik, M. I. Bondarenko, A. A. Smislov, T. F. Kopnina

Fryazinio Branch of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Vvedensky Sq.1, Fryazino Moscow region 141120, Russia 

 

The paper is received on October 29, 2017

 

Abstract. A linear relationship between the frequency shift and the change in the energy of the time-limited region of a monochromatic radio wave is revealed due to its refraction during radio transmission of the spherically symmetric gas envelope of the planet. The method for detecting stratified structures in the atmosphere-ionosphere system based on two-frequency radio transmission data is substantiated. The application of the method for analyzing the radio occultation data of the VENERA-15, -16 satellites indicated the existence of the lower region of the Venus daytime ionosphere and revealed stratified periodic variations in the electron number density with a vertical scale of 6 km in it.

Keywords: radio wave propagation, occultation of ionosphere.

References

1. Lusignan B., Modrell G., Morrison A. et al.  Sensing the Earth’s atmosphere with occultation satellites. Proc. IEEE, 1969, Vol. 57. No. 4, pp. 458.

2. Rangaswamy S. Recovery of atmospheric parameters from the Apollo/Soyuz-ATS-F radio occultation data. Geophys. Res. Letters, 1976, Vol. 3, No. 8, P. 483.

3. Liu A.S. On the determination and investigation of the terrestrial ionospheric refractive indices using Geos-3, ATS-6 satellite-to-satellite traking data, Radio Sci, 1978, Vol. 13, No 4, P. 709.

4. D.D. Feng, B.M. Herman. Remotely Sensing the Earth’s Atmosphere Using the Global Positioning System (GPS)—The GPS/MET Data Analysis, Journal of atmospheric and oceanic technology, 1999, Vol. 16, P. 989.

5. Kursinski E.R., Hajj G.A., Schofield J.T. et al. Observing Earth’s atmosphere with radio occultation measurements using the global positioning system, Journal of Geophysical Research, 1997, Vol. 102. No. 19, P. 23429-23465.

6. Kliore A., Gain D.L., Levy S. et al. Occultation experiments results of the first direct measurements of Mars atmosphere and ionosphere, Science, 1965. Vol. 149, No. 3689, P. 1243-1250.

7. Kliore A.J., Levy G.S., Cain D.L. et al. Atmosphere and ionosphere of Venus from the Mariner 5 S-band radio occultation measurements, Science, 1967, Vol. 158, No. 3809, P. 1683-1688.

8. Tyler. G. L. Radio propagation experiments in the outer solar system with Voyager, Proc. IEEE, 1987, Vol. 75, P. 1404-1431.

9. Brace L.H., Kliore A.J. The structure of the Venus ionosphere, Space Science Reviews, 1991, Vol. 55, Jan.-Feb. P. 81-163.

10. Jenkins, J.M., P.G. Steffes, D.P. Hinson et al. Radio occultation studies of the Venus atmosphere with the Magellan spacecraft: 2. Results from the October 1991 experiments, Icarus, 1994, Vol. 110, P. 79-94.

11. N.A. Armand, Yu.V. Gulyaev, A.L. Gavrik et al. Results of solar wind and planetary ionosphere research using radiophysical methods, Physics-Uspekhi, 2010, Vol. 53, No. 5, P. 517-523.

12. M. Patzold, B. Hausler, M. K. Bird et al. The structure of Venus’ middle atmosphere and ionosphere, Nature, Vol. 450, No. 29, November 2007, P. 657

13. N.A. Savich, V.I. Altunin, V.E. Andreev et al. Dual-frequency Vega radio sounding of Comet Halley, Sov. Astronomy Letters, 1986, Vol. 12, No. 5. P. 283.

14. Pätzold M., Neubauer F.M., Andreev V.E., Gavrik A.L. Detection of the inner plasma pile-up region at comet Halley during the VEGA-1 flyby by the radio sounding experiment. Journal of Geophysical Research, 1997, Vol. 102, No A2, Ð. 2213-2222.

15. Gavrik A.L., Vyshlov A.S., O.N. Doroshchuk et al. Measurements of variations in the integrated electron density along the communication routes to Venera 13 and Venera 14, Cosmic Research, 1983, Vol. 21, No. 3, Ð. 359-362.

16. N.A. Savich, S.L. Azarkh, A.S. Vyshlov et al. Frequency fluctuations of coherent radiosignals in the plasma around the sun: data from Venera 15, 16, Cosmic Research, 1987, Vol. 25, No. 2, P. 195-200.

17. A.L. Gavrik, Yu.A. Gavrik, L.N. Samoznaev. The Inhomogeneous Structure of the Daytime Venusian Ionosphere Studied by Venera 15 and Venera 16 via Radio Sounding, Journal of Communications Technology and Electronics, 2008, Vol. 53, No. 9, P. 1044–1051.

18. Gavrik A.L., Pavelyev A.G., Gavrik Yu.A. Detection of ionospheric layers in the Daytime Ionosphere of Venus at Altitudes of 80-120 km from VENERA-15 and -16 Two-Frequency Radio-Occultation Results, Geomagnetism and Aeronomy, 2009, Vol. 49, No. 8, P. 1223-1225.

19. A.L. Gavrik, Yu.A. Gavrik, T.F. Kopnina, and L. N. Samoznaev Amplitude and Frequency Variations of Coherent Radio Signals during Probing of the Daytime Venusian Ionosphere, Journal of Communications Technology and Electronics, 2010, Vol. 55, No. 3, P. 256-262.

20. A. L. Gavrik, Yu. A. Gavrik, L. N. Samoznaev, T. F. Kopnina. Possibility of radio-wave imaging of layered structures in experiments on radio translucence of planets ionosphere, Zhurnal Radioelektroniki - Journal of Radio Electronics, 2010, No. 5, P.1. Available at http://jre.cplire.ru/jre/may10/1/text.pdf (In Russian)

21. A. L. Gavrik. Using the L-band signal in the dual frequency occultation experiments, Zhurnal Radioelektroniki - Journal of Radio Electronics, 2011, No. 8, P.2. Available at http://jre.cplire.ru/jre/aug11/1/text.pdf (In Russian)

22. Gavrik A.L. and Samoznaev L.N. Analysis of the errors in the results of radio probing of the dayside ionosphere of Venus caused by its nonsphericity, Cosmic Research, 1985, Vol. 23, No. 1, Ð. 127-135.

23. Y.A. Kravcov, Y.I. Orlov. Geometricheskaja optika neodnorodnih sred [Geometrical optics of inhomogeneous media]. Moscow: Science. 1980. (In Russian)

24. Young, A.T., Scintillations during occultations by planets, I, An approximate theory, Icarus, 1976, Vol. 27, No. 3, P. 335-357.

25. Haugstad B.B. Effects of the inhomogenoeus background on radiation propagating through turbulent planetary atmospheres, Radio Sci., 1978, Vol. 13, P. 435-440.

26. A.S. Bakai, Y.T. Stepanovskiy. Adiabaticheski invariant [Adiabatic invariant]. Kiev: Naukova Dumka. 1981. (In Russian)

27. Y.A. Liou, A.G. Pavelyev. Simultaneous observations of radio wave phase and intensity variations for locating the plasma layers in the ionosphere, Geophys Res Lett., 2006, Vol. 33, P. L23102.

28. A.G. Pavelyev, Y.A. Liou, J. Wickert et al., Eikonal acceleration technique for studying of the Earth and planetary atmospheres by radio occultation method, Geophys. Res. Lett., 2009, Vol. 36, P. L21807.

29. Ya. A. Ilyushin, A. L. Gavrik, Yu. A. Gavrik, T. F. Kopnina. Simulation of an occultation sounding experiment using a numerical calculation of the parabolic diffraction equation, Zhurnal Radioelektroniki - Journal of Radio Electronics, 2012, No. 3. P.6. Available at http://jre.cplire.ru/jre/mar11/1/text.pdf (In Russian)

30. Savich N.A., Andreev V.E., Vyshlov A.S. et al. The nighttime ionosphere of Venus from the "Venera-15,16" radio occultation data, Journal of Communications Technology and Electronics, 1986, Vol. 31. No. 3. P. 433-439.

31. N.A. Savich, V.E. Andreev, A.S. Vyshlov et al.The polar ionosphere of Venus near terminator from the "Venera-15,16" radio occultation data, Cosmic Research, 1986, Vol. 24, No. 3, P. 364-369.

32. M. Patzold, S. Tellmann, B. Hausler et al. A sporadic layer in the Venus lower ionosphere of meteoric origin, Geophysical research letters, 2010, Vol. 36, P. L05203.

 

For citation:

A. L. Gavrik, M. I. Bondarenko, A. A. Smislov, T. F. Kopnina. Method of diagnostics of layered structures in the atmosphere and ionosphere during occultation. Zhurnal Radioelektroniki - Journal of Radio Electronics, 2017, No. 11. Available at http://jre.cplire.ru/jre/nov17/9/text.pdf. (In Russian)