"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 11, 2018

contents of issue      DOI  10.30898/1684-1719.2018.11.17     full text in Russian (pdf)  

Scattering of spin waves by the interface of biaxial ferromagnets

 V. D. Poimanov 1, V. V. Kruglyak 2, V. G. Shavrov 3

1 Donetsk National University, Universitetskaya  24, Donetsk 83001, Ukrain

2 University of Exeter, Stocker Road, Exeter, EX4 4QL, United Kingdom

3 Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia


The paper is received on November 19, 2018


Abstract. The paper studies the scattering of exchange spin waves at the interface of semi-infinite magnets with a uniform ground state. The conditions for the formation of inhomogeneous exchange spin waves (GSSB) corresponding to the imaginary roots of the characteristic equation are considered. Such solutions arise in biaxial magnets, in which axial symmetry is absent, which leads to the elliptical precession of magnetization. The effect is considered for the case of small ellipticities of precession in the framework of perturbation theory. The amplitude reflection and transmission coefficients were obtained and their analysis was performed. It is shown that, depending on the frequency ratio of homogeneous FMR in contacting ferromagnets, the frequency dependence of the reflection coefficient can be monotonic or have a minimum. The origin of the latter can be traced to the condition of equality of the wave impedances in the limiting case of circular precession. At the same time, the introduction of wave impedances into consideration in the case of elliptical precession is not possible. The frequency dependence of the transmission coefficient always remains monotonous.

Keywords: biaxial ferromagnet, inhomogeneous spin waves, ellipticity, boundary conditions.


1.      Nikitov S.A., Kalyabin D.V., Lisenkov I.V., Slavin A.N., Barabanenkov Y.N., Osokin S.A., Sadovnikov A.V., Beginin E.N., Morozova M.A., Sharaevsky Y.P., Filimonov Y.A., Khivintsev Y.V., Vysotsky S.L., Sakharov V.K., Pavlov E.S. Magnonics: a new research area in spintronics and spin wave electronics.  Physics-Uspekhi. 2015. Vol. 58. p. 1002.

2.      Nikitov S.A., Tailhades P., Tsai C.S. Spin waves in periodic magnetic structures - magnonic crystals.  Journal of Magnetism and Magnetic Materials. 2001. Vol. 236. p. 320.

3.      Dzyaloshinsky I.E. A thermodynamic theory of weak ferromagnetism of antiferromagnetics. Journal of Physics and Chemistry of Solids. 1958. Vol. 4. p. 241.

4.      Bariakhtar V.G., Stefanovsky E.P. Spin-wave spectrum in antiferromagnets with a spiral structure.  Fizika Tverdogo Tela – Physics of the Solid State. 1969. Vol. 11, No. 7. pp. 1946-1952. (In Russian)

5.      Davies C.S., Kruglyak V.V. Graded-index magnonics.  Low Temperature Physics. 2015. Vol. 41. p. 976.

6.      Elachi C. Magnetic wave-propagation a periodic medium.  IEEE MAG-11. 1975. p. 36.

7.      Gulayev Y.V., Nikitov S.A., Plesskii V.P. Magnetostatic wave-propagation in a normally magnetized ferrite plate with periodically non-flat surfaces.  Fizika Tverdogo Tela – Physics of the Solid State. 1980. Vol. 22. p. 2831. (In Russian)

8.      Beginin E.N., Filimonov Y.A., Pavlov E.S., Vysotskii S.L., Nikitov S.A. Bragg resonances of magnetostatic surface spin waves in a layered structure: Magnonic crystal-dielectric-metal.   Applied Physics Letters. 2012. Vol. 100. p. 252412.

9.      Filimonov Y.A., Pavlov E., Vystostkii S.L., Nikitov S.A. Magnetostatic surface wave propagation in a one-dimensional magnonic crystal with broken translational symmetry.  Applied Physics Letters. 2012. Vol. 101. p. 242408.

10.    Dzian S.A., Ivanov B.A. Collective oscillations of the magnetic moments of a chain of spherical magnetic nanoparticles with uniaxial magnetic anisotropy.  Journal of Eksperimental and Theoretical Physics. 2013. V. 116. No. 6. pp. 975-979.

11.    Morozova M.A., Grishin S.V., Sadovnikov A.V., Sharaevskii Y.P., Nikitov S.A. Magnonic bandgap control in coupled magnonic crystals.  IEEE Transactions on Magnetics. 2014. Vol. 50. p. 4007204.

12.    Shavrov V.G., Scheglov V.I. Magnitostaticheskie volny v neodnorodnykh polyakh [Magnetostatic waves in inhomogeneous fields]. Moscow, Fizmatlit Publ., 2016. 359p. Available at https://biblioclub.ru/index.php?page=book_red&id=485352 (In Russian)

13.    Vashkovsky A.V., Stalmakhov V.S., Sharaevsky Yu.P. Magnitostaticheskie volny v elektronike sverkhvysokikh chastot [Magnetostatic waves in electronics of ultra high frequencies].  Saratov, Satatov State Univrsity, 1993. 314 p. Available at http://fireras.su/biblio/wp-content/uploads/46958.pdf (In Russian)

14.    Ignatchenko V.A., Mankov Y.I., Maradudin A.A. The spectrum and damping of waves in partially randomized multilayers.  Journal of Physics: Condensed Matter. 1999. Vol. 11. p. 2773.

15.    Ignatchenko V.A., Tsikalov D.S. Spin waves in multilayers with different magnitudes of the magnetization, exchange, and anisotropy.  Solid State Phenom. 2012. Vol. 190. p. 71.

16.    Gorobets Y.I., Kuchko A.N., Reshetnyak S.A. Reflection of spin waves in multilayered materials with modulated magnetic parameters.  Fizika Tverdogo Tela – Physics of the Solos Stste. 1996. Vol. 38. p. 575.

17.    Tkachenko V.S., Kruglyak V.V., Kuchko A.N. Spectrum and reflection of spin waves in magnonic crystals with different interface profiles.  Phys. Rev. B. 2010. Vol. 81. p. 024425.

18.    Dvornik M., Kuchko A.N., Kruglyak V.V. Micromagnetic method of s-parameter characterization of magnonic devices.  Journal of Applied Physics. 2011. Vol. 109. p. 07D350.

19.    Sadovnikov A.V., Davies C.S., Kruglyak V.V., Romanenko D.V., Grishin S.V., Beginin E.N., Sharaevskii Y.P., Nikitov S.A. Spin wave propagation in a uniformly biased curved magnonic waveguide.  Physical Review B. 2017. Vol. 96. p. 060401.

20.    Tkachenko V.S., Kuchko A.N., Dvornik M., Kruglyak V.V. Propagation and scattering of spin waves in curved magnonic waveguides.  Appl. Phys. Lett. 2012. Vol. 101. p. 152402.

21.    Au Y., Dvornik M., Dmytriiev O., Kruglyak V.V. Nanoscale spin wave valve and phase shifter.  Applied Physics Letters. 2012. Vol. 100. p. 172408.

22.    Gorobets Yu.I., Reshetnyak S.A. Reflection and refraction of spin waves in uniaxial magnets in the geometric optics approximation. Technical Physics. 1998. Vol. 43. No. 2.  Pp. 188-191

23.    Reshetnyak S.A. Refraction of surface spin waves in spatially non-uniform ferrodielectrics with biaxial magnetic anisotropy. Physics of the Solid State. 2004. Vol. 46. No. 6. P.1061-1067.

24.    Dadoenkova Yu.S., Dadoenkova N.N., Lyubchanskii I.L., Sokolovskyy M.L., Kłos J.W., Romero-Vivas J., Krawczyk M. Huge Goos-Hanchen effect for spin waves: A promising tool for study magnetic properties an interfaces. Applied Physics Letters. 2015. Vol. 101. p. 042404.

25.    Kruglyak V.V., Kuchko A.N., Finokhin V.I. Spin-wave spectrum in an ideal multilayer magnet with the modulation of all parameters of the Landau-Lifshitz equation. Physics of the Solid State. 2004. Vol. 46. No. 5. P.867-871.

26.    Born M., Wolf E. Principles of Optics. Pergamon Press, 1970

27.    Salansky N.M., Erukhimov M.Sh. Fizicheskie svoistva i primenenie tonkikh plenok  [Physical properties and application of thin films].  Novosibirsk, Nauka Publ.,  1975. 222 p. (In Russian)

28.    Brekhovskikh L.M. Volny v sloistykh sredakh [Waves in layered media].  Ìoscow, Nauka Publ., 1973. 343p. (In Russian)


For citation:
V. D. Poimanov, V. V. Kruglyak, V. G. Shavrov. Scattering of spin waves by the interface of biaxial ferromagnets. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 11. Available at http://jre.cplire.ru/jre/nov18/17/text.pdf

DOI  10.30898/1684-1719.2018.11.17