"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 11, 2018

contents of issue      DOI  10.30898/1684-1719.2018.11.3     full text in Russian (pdf)  



Yu. V. Gulyaev1, V. A. Cherepenin1, I. V. Taranov1, V. A. Vdovin1, G.B. Khomutov 1, 2

1 Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia

2 Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119999, Russia


The paper is received on October 26, 2018


Abstract. For the first time, new nanocomposite liposomes and vesicles with a modified structure containing functional inorganic electrically conductive nanoparticles associated with both the inner and the outer surface of the liposomal membrane were prepared. The effect of ultrashort electric field pulses with a duration of less than 10 ns and an intensity in a dielectric aqueous medium of the order of 10 kV/cm on the aqueous suspension of such nanocomposite liposomes containing an encapsulated model low molecular weight compound (NaCl) has been studied. It was found that as a result of exposure to such impulses, decapsulation and destruction of nanocomposite liposomes present in the suspension occurs, accompanied by a corresponding increase in the conductivity of the suspension. It is shown that the sensitivity of nanocomposite liposomal capsules to external electrical effects is due to the inclusion of electrically conductive nanoparticles in their structure. It was found that the effect of decapsulation of liposomal capsules is significantly higher in the case of the impact of electric field pulses on liposomal capsules with bound magnetite nanoparticles compared with the case of a similar effect on the same capsules that do not contain conducting nanoparticles. This fact determines the selectivity of the effect of electric pulses on nanocomposite membrane vesicles containing electrically conductive nanoparticles. A theoretical analysis of non-thermal interaction of nanostructured liposomal capsules containing conducting nanoparticles on the outer and inner surfaces of the membrane with ultrashort electrical pulses was carried out. A theoretical model of non-thermal interaction of nanostructured liposomal capsules with ultrashort electrical pulses is constructed. In the model under consideration, electrically conductive nanoparticles are associated with the outer and inner surfaces of membranes of nanocomposite liposomal capsules. Within the framework of the constructed model, the mechanisms of destruction of the liposomal capsule membrane are described, due to the interaction of conducting spherical nanoparticles located on opposite surfaces of the liposomal membrane resulting from the ultrashort electrical effect on aqueous suspensions of nanostructured liposomal capsules.

Keywords: capsules, liposomes, structure, nanoparticles, polyelectrolytes, ultrashort pulse of electric field.


1.    Donath E., Sukhorukov G.B., Caruso F., Devis S.A., Möhwald H. Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. Angew Chem. Int. Ed. Engl., 1998, Vol. 37, p. 2202.

2.    Sukhorukov G.B., Donath E., Davis S.A., Lichtenfeld A., Caruso F., Popov V.I., Möhwald H. Stepwise polyelectrolyte assembly on particle surfaces: A Novel Approach to Colloid Design. Polym. Adv. Technol., 1998, Vol. 9, p. 759.

3.    Sukhorukov G.B., Antipov A., Voigt A., Donath E., Möhwald H. pH-Controlled Macromolecule Encapsulation in and Release from Polyelectrolyte Multilayer Nanocapsules. Macromol. Rapid Commun, 2001, Vol. 22, pp. 44-46.

4.    Gennady B. Khomutov, Vitaly P. Kim, Kirill V. Potapenkov, Alexander A. Parshintsev, Eugene S. Soldatov, Nazym N. Usmanov, Alexander M. Saletsky, Andrey V. Sybachin, Alexander A. Yaroslavov, Vasiliy A. Migulin, Igor V. Taranov, Vladimir A. Cherepenin, Yury V. Gulyaev, Langmuir monolayers and Langmuir-Blodgett films of pH-sensitive lipid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, Vol. 532, pp. 150-154.

5.    Radt B., Smith T.A., Caruso F. Optically Addressable Nanostructured Capsules. Adv. Mater, 2004, vol. 16, pp. 2184-2189.

6.    Lu Z., Prouty M.D., Guo Z., Golub V.O., Kumar C.S.S.R., Lvov Y.M. Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co, Au nanoparticles. Langmuir, 2005, Vol. 21, pp. 2042-2050.

7.    D. A. Gorin, D. G. Shchukin, A. I. Mikhailov, K. Köhler, S. A. Sergeev, S. A. Portnov, I. V. Taranov, V. V. Kislov, G. B. Sukhorukov. Effect of Microwave Radiation on Polymer Microcapsules Containing Inorganic Nanoparticles. Technical Physics Letters, 2006, Vol. 32, No. 1, pp. 70–72.

8.    Gorin D.A., Shchukin D.G., Koksharov Yu.A., Portnov S.A., Köhler K., Taranov I.V., Kislov V.V., Khomutov G.B., Möhwald H., Sukhorukov G.B. Effect of microwave irradiation on composite iron oxide nanoparticle/polymer microcapsules. Progress in Biomedical Optics and Imaging. 2007. Vol. 6536, p. 653604.

9.    Gulyaev Y.V., Cherepenin V.A., Vdovin V.A., Taranov I.V., Sukhorukov G.B., Gorin D.A., Khomutov G.B.  Decapsulation of polyelectrolyte nanocomposite microcapsules by pulsed microwave effect. Journal of Communications Technology and Electronics, 2015. Vol.  60, No. 11, pp. 1286-1290.

10.  Schwendener R.A. Bio-Applications of Nanoparticles. Edited by Chan W.C.W.  Ser. Advances in Experimental Medicine and Biology, 2007, Vol. 620, p. 117.

11.  Amstad E., Kohlbrecher J., Muller E., Schweizer T., Textor M., Reimhult E. Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes. Nano Letters, 2011, Vol. 11, pp. 1664- 1670.

12.  Yu. V. Gulyaev, V. A. Cherepenin, I. V. Taranov, V. A. Vdovin, A. A. Yaroslavov, V. P. Kim, G. B. Khomutov. Remote decapsulation of nanocomposite liposomal capsules containing gold nanorods by ultrashort electric pulses. Journal of Communications Technology and Electronics, 2016, Vol. 61, No. , pp. 56-60.

13.  Gulyaev Y.V., Cherepenin V.A., Vdovin V.A., Taranov I.V., Khomutov G.B., Yaroslavov A.A., Kim V.P. Pulsed electric field-induced remote decapsulation of nanocomposite liposomes with implanted conducting nanoparticles. Journal of Communications Technology and Electronics. 2015. Ò. 60. ¹ 10. Ñ. 1097-1108.

14.  G B. Khomutov, V P. Kim, Y A., Koksharov, K V. Potapenkov, A A. Parshintsev, E S. Soldatov, N N. Usmanov, A M., S, A V. Sybachin, A A. Yaroslavov, I V. Taranov, V A. Cherepenin, Y V. Gulyaev. Nanocomposite biomimetic vesicles based on interfacial complexes of polyelectrolytes and colloid magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, Vol. 532, 5 November, pp. 26-35.

15.  Gubin S.P., Gulyaev Yu.V., Khomutov G.B., Kislov V, V.,  Kolesov V, V.,  Soldatov, E.S.,  Sulaimankulov, K.S.,  Trifonov, A.S. Molecular clusters as building blocks for nanoelectronics: The first demonstration of a cluster single-electron tunnelling transistor at room temperature.  Nanotechnology. 2002, Vol. 13, No. 2, pp.185.

16.  Kislov V.V., Kolesov V.V., Taranov I.V. Electron transport through a molecular nanocluster. Journal of Communications Technology and Electronics, 2002, Vol. 47, No. 11, pp. 1266-1270.

17.  Yu.V. Gulyaev, V.Kislov, V.V.Kolesov, I.V.Taranov, S.P.Gubin, G.B.Khomutov, E.S.Soldatov, I.A.Maximov, L.Samuelson.  Electronics of Molecular Nanoclusters. International Journal of Nanoscience, 2004, Vol. 3, No. 1-2 pp. 137-147.

18.  Kislov V., Medvedev B., Gulyaev Yu., I. Taranov and V. Kashin. Organized superstructures at nanoscale and new functional nanomaterials. International Journal of Nanoscience. 2007, Vol. 6, No. 5, pp. 373.

19.  Koning G.A., Eggermont A.M.M., Lindner L.H., ten Hagen T.L.M. Pharmaceutical Research, 2010, Vol. 27, No. 8, pp. 1750.

20.  Artemyev M., Kisiel D., Abmiotko S. M. N. Antipina, G. B. Khomutov, V.V. Kislov, A.A. Rakhnyanskaya. Self-Organized, Highly Luminescent CdSe Nanorod-DNA Complexes. Journal American Chemical Society, 2004, Vol.  126, No. 34, pp. 10594.

21.  Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics, 1981, Vol. 17, pp. 1247−1248.

22. L. D. Landau, E. M. Livshits, Electrodynamics of Continuous Media. Pergamon, Oxford, 1984.

23. V. P. Kim, A. V. Ermakov, E. G. Glukhovskoy, A. A. Rakhnyanskaya, Yu. V. Gulyaev, V. A. Cherepenin, I. V. Taranov, P. A. Kormakova, K. V. Potapenkov, N. N. Usmanov, A. M. Saletsky, Yu. A. Koksharov, G. B. Khomutov. Planar Nanosystems on the Basis of Complexes Formed by Amphiphilic Polyamine, Magnetite Nanoparticles, and DNA Molecules Nanotechnologies in Russia, 2014, Vol. 9, No. 5–6, pp. 280–287.


For citation:
Yu. V. Gulyaev, V. A. Cherepenin, I. V. Taranov, V. A. Vdovin, G. B. Khomutov. Non-thermal action of ultrashort electric pulses on nanostructured liposomal capsules in aqueous dielectric medium. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2018. No. 11. Available at http://jre.cplire.ru/jre/nov18/3/text.pdf

DOI  10.30898/1684-1719.2018.11.3