Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. №11
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2021.11.13
UDC: 621.396.969.11
Study of information completeness of radar data for air target classification
A. V. Kvasnov
Peter the Great St. Petersburg Polytechnic University
195251, Politehnicheskaja street 29, St. Petersburg, Russia
The paper was received October 19, 2021.
Abstract. In the article considers the estimation of completeness of radar data that obtained by the reflected signal from air spot targets as result of remote sensing. The feature space analyses based on information theory therefore evaluates maximum deviation data, which can be used for automatic target classification. The article demonstrates the study of trajectory (velocity, climb and height of flight) and signal (radar cross section and radar existing) features in respect of potential detected accuracy. As a priori data, reference information is used on various types and classes of air objects - aircraft (large transport aircraft, medium-haul aircraft, business jets, light motor aircraft, etc.). Modeling shows the most efficiency and completeness features are height of flight (Hh ≈ 5.17) and velocity (Hv ≈ 4.17) of air object systems.
Key words: radiolocation, data completeness, target classification, remote sensing, radar information, spot target, entropy of features.
1. Gini F., Rangaswamy M. Knowledge based radar detection, tracking, and classification. A Wiley-Interscience publication, 2008. 288 p.
2. Kondratenkov G.S., Frolov A. Yu. Radiovidenie. Radiolokacionnye sistemy distancionnogo zondirovaniya Zemli [Radio vision. Radar systems for remote sensing of the Earth]. Moscow, Radiotekhnika. 2005. 368 p. (In Russian)
3. Kvasnov A.V. Intellektual'naya obrabotka radiolokacionnoj informacii [Intelligent processing of radar information]. St. Petersburg, Sankt-Peterburgskij politekhnicheskij universitet Petra Velikogo. 2021. 352 p. https://doi.org/10.25313/radar-information (In Russian)
4. Ryzhkov A.V., Zrnic D.S. Radar Polarimetry for Weather Observations. Springer. 2019. 497 p. https://doi.org/10.1007/978-3-030-05093-1
5. Putin V.V. Ob istoricheskom edinstve russkih i ukraincev [About the historical unity of Russians and Ukrainians]. http://www.kremlin.ru. Date of access: 10.15.2021. URL: http://www.kremlin.ru/events/president/news/66181 (In Russian)
6. Ayvazyan S.A., Bukhstaber V.M., Enyukov I.S., Meshalkin L.D. Prikladnaya statistika: klassifikaciya i snizhenie razmernosti [Applied statistics: classification and dimensionality reduction]. Moscow, Finansy i statistika. 1989. 608 p. (In Russian)
7. Nichiporenko N.T., Sivachenko B.N. Comparative analysis of the potential information capacity of coastal and ship radar stations. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova [Bulletin of the Admiral S. O. Makarov State University of Marine and River Fleet]. 2017. V.9. №2. P.380-389. (In Russian)
8. Zhigalov A.N. Relevance and completeness of radar data as pragmatic characteristics of space systems of remote sensing of the Earth. Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa [Modern problems of remote sensing of the Earth from space]. 2009. V.6. №1. P.151-159. (In Russian)
9. Cilliers J.E. Information Theoretic Limits on Non-cooperative Airborne Target Recognition by Means of Radar Sensors. A thesis for the degree of Doctor of Philosophy. University College London. 2018.
10. Kudryashov B.D. Teoriya informacii: uchebnik dlya vuzov [Information theory: textbook for universities]. St. Petersburg, Piter. 2009. 320 p. (In Russian)
11. Entropy. Kolichestvennaya mera informacii. Osnovnye svojstva entropii [A quantitative measure of information. Basic properties of entropy]. iMath Wiki. Date of access: 08.06.2021. URL: https://wiki.livid.pp.ru/students/inth/lectures/4.html
12. Kvasnov A.V. Evaluation of the construction of a radar target route by a fixed AFAR beam in the far observation zone. Radiotekhnika [Radio Engineering]. 2017. №2. P.4-12. (In Russian)
13. Bi X., Du J., Zhang Q., Wang W. Improved multi-target radar TBD algorithm. Journal of Systems Engineering and Electronics. 2015. V.6. №26. P.1229-1235. https://doi.org/10.1109/JSEE.2015.00135
14. Kvasnov A.V. Methodology of classification and recognition of the radar emission sources based on Bayesian programming. IET Radar, Sonar & Navigation. 2020. V.14. №8. P.1175-1182. https://doi.org/10.1049/iet-rsn.2019.0380
15. Kvasnov A.V. Applications of Bayesian programming in problems of recognition and classification of radio sources. Radiotekhnika [Radio Engineering]. 2020. V.84. №3(5). P.5-14. https://doi.org/10.18127/j00338486-202003(05)-01 (In Russian)
16. Bakulev P.A. Radiolokacionnye sistemy [Radar systems]. Moscow, Radiotekhnika. 2004. 320 p. (In Russian)
17. Lagarkov A.N., Poghosyan M.A. Fundamental and applied problems of STEALTH technologies. Vestnik RAN [Bulletin of the Russian Academy of Sciences]. 2003. V.73. №9. P.779-787. (In Russian)
18. Kvasnov A.V., Gladilin P. E., Pershutkin A. E. Method of recognition of stationary group objects by radar image based on artificial neural networks. Uspekhi sovremennoj radioelektroniki [Successes of modern radio electronics]. 2020. V.74. №8. P.63-71. https://doi.org/10.18127/j20700784-202008-07 (In Russian)
19. Paul Jackson. Jane's All the World's Aircraft 2004-2005. Jane's Information Group Limited. 2004. 861 p.
20. Visentin T. Polarimetric Radar for Automotive Applications. PhD thesis. Karlsruhe Technology Institute. 2019. https://doi.org/10.5445/KSP/1000090003
For citation:
Kvasnov A.V. Study of information completeness of radar data for air target classification. Zhurnal Radioelektroniki [Journal of Radio Electronics] [online]. 2021. №11. https://doi.org/10.30898/1684-1719.2021.11.13 (In Russian)