

DOI: https://doi.org/10.30898/1684-1719.2022.11.1

УДК: 621.396.677.83

УСТРОЙСТВО ДЛЯ КОСВЕННЫХ ИЗМЕРЕНИЙ ЭФФЕКТИВНОСТИ ЭЛЕКТРОМАГНИТНОГО ЭКРАНИРОВАНИЯ МАЛОГАБАРИТНЫХ ЭКРАНИРУЮЩИХ КОНСТРУКЦИЙ

А.А. Иванов, М.Е. Комнатнов

Томский государственный университет систем управления и радиоэлектроники, 634050, Томск, ул. Ленина 40.

Статья поступила в редакцию 06 октября 2022

Аннотация. Разработан лабораторный макет устройства для косвенных измерений эффективности экранирования (ЭЭ) малогабаритных экранирующих конструкций (ЭК). Созданы прототипы измерительной оснастки и программного обеспечения устройства. С их помощью выполнены тестовые измерения ЭЭ типовой прямоугольной ЭК. Показано, что в диапазоне частот от 10 МГц до 1 ГГц, частотные зависимости ЭЭ, полученные с помощью разработанного макета, измерений в безэховой камере, а также вычислений аналитическим и численным методами, хорошо согласуются. Так, среднее значение модуля абсолютной погрешности не превышает 5,4 дБ.

Ключевые слова: эффективность экранирования, помехозащищенность, экранирующие конструкции, экранирующий корпус, косвенные измерения.

Финансирование: Разработка устройства выполнена за счет гранта РНФ № 19-79-10162, https://rscf.ru/project/19-79-10162. Моделирование выполнено при финансовой поддержке Минобрнауки России (Проект FEWM-2022-0001).

Автор для переписки: Иванов Антон Андреевич, anton.ivn@tu.tusur.ru

Введение

Для обеспечения устойчивости электронной техники к воздействию излучаемых электромагнитных помех широко используются экранирующие конструкции (ЭК), чаще всего изготавливаемые в виде частично-замкнутых корпусов или кожухов. Способность таких конструкций ослаблять уровень помех характеризуется эффективностью экранирования (ЭЭ), зависящей не только от электрофизических параметров материала ЭК, но и от её геометрических размеров, формы, внутреннего заполнения и т.п. [1-3].

В процессе проектирования ЭК для определения ЭЭ могут применяться аналитические [4-6] или численные [7-9] методы, однако достоверную оценку ЭЭ реальной ЭК получить eë онжом только при натурных испытаниях (измерениях). Обычно измерения ЭЭ выполняются согласно IEEE STD 299.1 [10], MIL-STD-285 [11] методикам ИЗ стандартов ГОСТ 30373-95 [12]. При этом используются две антенны (передающая и приёмная), одна из которых размещается внутри ЭК. В малогабаритных ЭК, применяющихся при экранировании электронных компонентов, печатных плат, соединителей кабельных сборок и т.п., размещение антенны зачастую затруднительно, поэтому применение таких подходов к измерениям ЭЭ не представляется возможным.

Известны методы для косвенных измерений ЭЭ, не требующие внесения антенны в ЭК [13,14]. Один из таких методов предложен в [15]. Для измерения ЭЭ в нём применяется оснастка в виде тонкой металлической пластины, которая диэлектрических c помощью прокладок размещается над апертурой (отверстием, щелью) ЭК, образуя с поверхностью стенки ЭК линию передачи с волновым сопротивлением $Z_{e} \approx 50$ Ом (рис. 1). К одному из концов полученной передачи подключается ЛИНИИ согласованная а к другому – векторный или скалярный анализатор цепей. Далее производятся измерения частотной зависимости модуля коэффициента отражения $|S_{11}|$ в полученной линии передачи. После этого на основе геометрических размеров ЭК и измеренных значений $|S_{11}|$ по аналитическим выражениям рассчитывается ЭЭ.

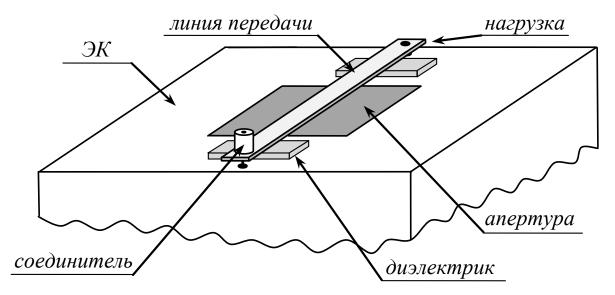


Рис. 1. Схема экспериментальной установки для косвенных измерений ЭЭ согласно [15]

Несмотря на достаточную простоту и универсальность метода из [15], на данный момент отсутствует устройство для косвенных измерений ЭЭ на его основе. Цель работы – разработать лабораторный макет такого устройства.

1. Функциональная схема устройства

На основе метода из [15] разработана обобщенная функциональная схема устройства (рис. 2). Схема включает в себя три основных функциональных блока: измерительную оснастку (ИО), блок измерения (БИ) и блок вычислений (БВ). Генератор (Г), входящий в состав БИ, используется для формирования гармонического сигнала, применяющегося в качестве входного воздействия для ИО, устанавливаемой на ЭК.

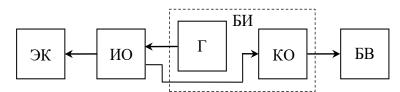


Рис. 2. Обобщенная функциональная схема устройства

Значения $|S_{11}|$ для ИО, установленной на ЭК, определяются с помощью измерителя модуля коэффициента отражения (КО) и в оцифрованном виде поступают на блок вычислений (БВ), который выполняет расчет частотной зависимости ЭЭ на основе аналитических выражений из [15].

2. Разработка макета измерительной оснастки

При создании ИО для лабораторного макета устройства в качестве исходной структуры выбрана подвешенная в воздухе регулярная микрополосковая линий передачи (МЛП) длиной $l_s=152$ мм с геометрическими размерами $w_s=9$ мм, $t_s=0.5$ мм и $h_s=3.5$ мм и волновым сопротивлением $Z_s\approx 50$ Ом (рис. 3). Часть опорного проводника МПЛ предполагалось использовать в качестве контактной площадки для установки ИО на ЭК.

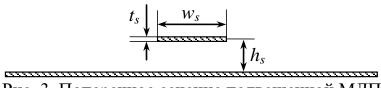
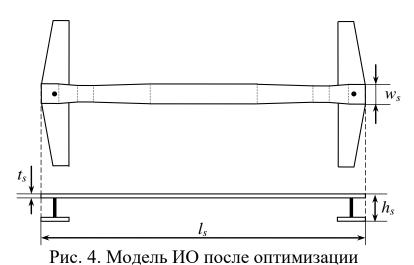



Рис. 3. Поперечное сечение подвешенной МЛП

При помощи метода доверительных интервалов выполнена параметрическая оптимизация исходной МПЛ по критерию минимизации значений $|S_{11}|$ в диапазоне частот до 1 ГГц. Основным параметром для оптимизации являлась ширина проводника w_s . В результате получена модель ИО нерегулярной передачи линейными на основе линии четырьмя сужениями (рис. 4).

На основе модели из рис. 4 изготовлен лабораторный макет ИО для разрабатываемого устройства косвенных измерений ЭЭ (рис. 5). В качестве материала для макета использована медная фольга толщиной 0,5 мм. Для измерения $|S_{11}|$ и подключения согласованной нагрузки на краях макета

установлены коаксиальные СВЧ-соединители, которые также служат для фиксации нижней и верхней частей макета на заданном расстоянии $h_s = 3.5$ мм.

Для проверки макета ИО в диапазоне от 10 МГц до 1 ГГц выполнены измерения частотной зависимости $|S_{11}|$ при его установке на корпус без апертуры. Для измерений применялось оборудование АО НПФ «Микран»: скалярный анализатор цепей Р2М-40, датчик КСВ ДК4-50-05Р-05Р, а также согласованная коаксиальная нагрузка НС3-20-13 (пределы допускаемой абсолютной погрешности измерений $|S_{11}|$ анализатором Р2М-40 с помощью ДК4-50-05Р-05Р составляют \pm (0,14· $|S_{11}|^2$ + 0,04) дБ [16]). Измеренная частотная зависимость $|S_{11}|$ представлена на рис. 6.

Рис. 5. Внешний вид изготовленного макета ИО

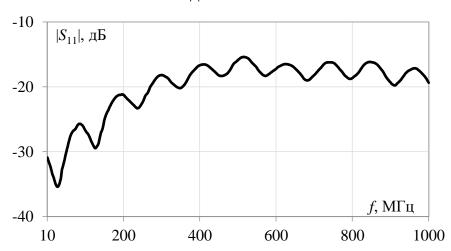


Рис. 6. Частотная зависимость $|S_{11}|$ макета оснастки

Из рис. 6 видно, что максимальное значение $|S_{11}|$ достигает минус 15,4 дБ на частоте 520 МГц. При таком значении $|S_{11}|$ КСВН = 1,41, что согласно

стандартам [17, 18] достаточно для измерительных устройств на основе линий передачи.

3. Разработка программного обеспечения лабораторного макета

В качестве прототипа БВ разработано программное обеспечение (ПО) лабораторного макета устройства для косвенных измерений ЭЭ [19]. ПО создано на базе операционной системы Windows 10 в среде разработки Qt Creator с использованием языка С++. Графическая оболочка ПО разработана на языке разметки XML с применением инструмента проектирования графических интерфейсов пользователя Qt Designer и модуля визуализации данных Qt Data Visualization.

Работа программой осуществляется путем последовательного перемещения между окнами-вкладками. В стартовых окнах ПО задаются геометрические размеры ЭК, загружается измеренная частотная зависимость $|S_{11}|$, а также устанавливаются точки наблюдения p внутри ЭК. Используя аналитические выражения из [15], программа вычисляет набор частотных зависимостей ЭЭ для каждой заданной точки р. Результаты вычислений отображаются в последней вкладке графического интерфейса ПО в виде трёхмерной поверхности (рис. 7). Для удобной работы с программой реализованы функции очистки графика и сохранения результатов вычислений.

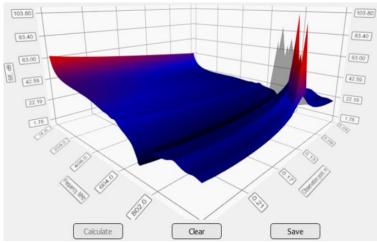


Рис. 7. Пример трёхмерного отображения ЭЭ в зависимости от частоты и положения точки наблюдения

4. Сборка и проверка лабораторного макета

Выполнена сборка лабораторного макета устройства для косвенных измерений ЭЭ на основе скалярного анализатора цепей Р2М-40, разработанной ИО и прототипа БВ в виде ПО [20]. Для проверки работоспособности макета изготовлен прямоугольный экранирующий корпус ИЗ стандарта IEEE STD 1597.2 [21] объемом $300 \times 120 \times 300$ мм³ с апертурой 80×80 мм² (рис. 8). Корпус выполнен из листового алюминия толщиной 1,5 мм, а его задняя и боковые стенки соединены при помощи пайки. Крепление лицевой стенки с апертурой выполнено винтовым соединением, обеспечивающим равномерное и плотное прилегание соединяемых частей корпуса, а также электрический контакт между ними, необходимый для уменьшения влияния боковых щелей на ЭЭ.

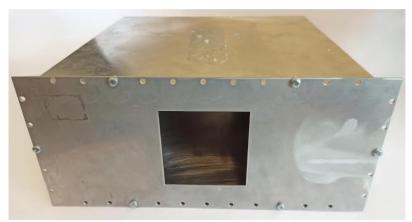


Рис. 8. Макет экранирующего корпуса с апертурой

В диапазоне частот от 10 МГц до 1 ГГц выполнена оценка ЭЭ в центре вышеописанного корпуса. Для оценки применялись: разработанный лабораторный макет устройства (рис. 9), аналитический метод из [5], численный метод конечных элементов (МКЭ) и методика измерения ЭЭ из стандартов [10-12].

Рис. 9. Макет устройства для косвенных измерений ЭЭ с ИО, установленной на корпус

Измерения ЭЭ по стандартам [10-12] выполнялись внутри безэховой камеры (БЭК). В качестве приёмной антенны использовалась активная дипольная антенна РусИнтелл АИ 5-0 [22], которая размещалась на расстоянии 0,6 м от экранирующего корпуса. Передающая антенна в виде несимметричного вибратора длиной 25 мм размещалась внутри корпуса. определялись из отношения модулей коэффициентов передачи $|S_{21}|$ между приёмной и передающей антеннами в присутствии и отсутствии корпуса. Для $|S_{21}|$ применялся векторный измерения значений анализатор Rohde&Schwarz ZNB 20 с погрешностью измерений $|S_{21}|$ не более 0,6 дБ в исследуемом частотном диапазоне [23]. При вычислениях по МКЭ ЭЭ определялась из напряженности электрического поля E, а в качестве материала корпуса применялся идеальный проводник. При дискретизации корпуса использовалась гексагональная сетка с адаптивным уточнением. Исходное число ячеек на длину волны составляло 40, а процент уточнения сетки не превышал 30% от общего числа элементов на каждом шаге.

Результаты оценки ЭЭ корпуса $300\times120\times300~{\rm km}^3$ разными подходами приведены на рис. 10.

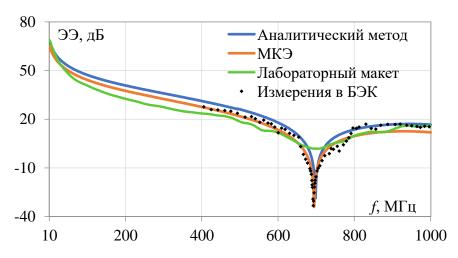


Рис. 10. Частотные зависимости ЭЭ в центре прямоугольного корпуса $300 \times 120 \times 300 \text{ мм}^3$

Из рис. 10 видно, что до 650 МГц ЭЭ монотонно убывает с ростом частоты. В области частоты 700 МГц из-за сложения распространяющихся в корпусе когерентных волн в нём возникает резонанс, при котором ЭЭ резко уменьшается вплоть до отрицательных значений. При этом на частотной зависимости ЭЭ, полученной с помощью разработанного макета, резонанс менее выражен, чем на зависимостях, полученных другими подходами. Также видно, что частотные зависимости ЭЭ, полученные разными подходами, схожи. Среднее значение модуля абсолютной погрешности (Δ) не превышает 5,4 дБ. Лучше всего с результатами косвенных измерений согласуются результаты моделирования по МКЭ: $\Delta \approx 3,3$ дБ. Таким образом, разработанный лабораторный макет позволяет проводить корректные измерения ЭЭ без внесения антенны в ЭК, что позволяет использовать его для малогабаритных ЭК, применяющихся в экранировании электронных компонентов, печатных плат, соединителей кабельных сборок и т.п.

В процессе выполнения измерений выявлены недостатки разработанного лабораторного макета устройства, связанные с его ИО. Во-первых, из-за небольшой толщины проводники ИО изгибаются при её установке на ЭК, что приводит к «нестабильности» измеряемых *S*-параметров (т.е. низкой повторяемости результатов измерений). Во-вторых, выбранная конструкция ИО не может быть унифицирована для её использования при натурных испытаниях

ЭК разного размера. В то же время преимуществами созданного варианта ИО являются простота разработки и низкая стоимость изготовления.

Заключение

Представлены результаты разработки лабораторного макета устройства для косвенных измерений ЭЭ без необходимости внесения антенны в ЭК. Описана общая функциональная схема устройства. Разработаны ИО и ПО для устройства. Выполнена сборка лабораторного макета устройства на основе скалярного анализатора цепей, ИО и ПО. Используя разработанный макет, методики испытаний по стандартам [10-12], МКЭ и аналитический метод из [5] выполнена оценка ЭЭ прямоугольного корпуса. Показано, что результаты оценки ЭЭ, полученные разными подходами, согласуются. По результатам выполненных измерений выявлены и описаны преимущества и недостатки разработанной ИО.

Финансирование: Разработка устройства выполнена за счет гранта РНФ № 19-79-10162, https://rscf.ru/project/19-79-10162. Моделирование выполнено при финансовой поддержке Минобрнауки России (Проект FEWM-2022-0001)

Литература

- 1. Basyigit I.B., Dogan H., Helhel S. The effect of aperture shape, angle of incidence and polarization on shielding effectiveness of metalic enclosures. *Journal of Microwave Power Electromagnetic Energy*. 2019. V.53. №2. P.115-127. https://doi.org/10.1080/08327823.2019.1607496
- 2. Rusiecki A., et al. Internal stirring: An approach to approximate evaluation of shielding effectiveness of small slotted enclosures. *IET Science, Measurement and Technology*. 2016. V.10. №6. P.659-664. https://doi.org/10.1049/iet-smt.2016.0060
- 3. Belkacem F.T., et al. Combined model for shielding effectiveness estimation of a metallic enclosure with apertures *IET Science*, *Measurement and Technology*. 2011. V.5. №3. P.88-95. https://doi.org/10.1049/iet-smt.2010.0040

- 4. Hill D.A., et al. Aperture excitation of electrically large lossy cavities. *IEEE Transactions on Electromagnetic Compatibility*. 1994. V.36. №3. P.169-178. https://doi.org/10.1109/15.305461
- 5. Robinson M.P., et al. Shielding effectiveness of a rectangular enclosure with a rectangular aperture. *Electronics Letters*. 1996. V.32. №17. P.1559-1560. https://doi.org/10.1049/el:19961030
- 6. Solin J.R. Formula for the field excited in a rectangular cavity with a small aperture. *IEEE Transactions on Electromagnetic Compatibility*. 2011. V.53. №1. P.82-90. https://doi.org/10.1109/TEMC.2010.2053711
- 7. Kubik Z., Skala J. Shielding effectiveness measurement and simulation of small perforated shielding enclosure using FEM. *Proceedings of IEEE International Conference on Environment and Electrical Engineering (EEEIC)*. 2015. P.1983-1988. https://doi.org/10.1109/EEEIC.2015.7165478
- 8. Jiao C., et al. Subcell FDTD analysis of shielding effectiveness of a thin-walled enclosure with an aperture. *IEEE Transactions on Magnetics*. 2006. V.42. №4. P.1075-1078. https://doi.org/10.1109/TMAG.2006.871638
- 9. Johns P.B., Christopoulos C. New frequency-domain TLM method for the numerical solution of steady-state electromagnetic problems. *IEE Proceedings* − *Science, Measurement and Technology*. 1994. V.141. №4. P.310-316. https://doi.org/10.1049/ip-smt:19941063
- 10. IEEE STD 299.1 2013. Standard method for measuring shielding effectiveness of enclosures and boxes having all dimensions between 0.1 m and 2 m. New York, IEEE Inc. 2013. 96 p.
- 11. MIL-STD-285 1956. Attenuation measurements for enclosures, electromagnetic shielding, for electronic test purposes, method of. Washington, Government printing office. 1956. 15 p.
- 12. ГОСТ 30373 95. Совместимость технических средств электромагнитная. Оборудование для испытаний. Камеры экранированные. Классы, основные параметры, технические требования и методы испытаний. Москва, Госстандарт России. 1995. 28 с.

- 13. Kühn M., Messer M., Weigel R. Correlation of impedance and Shielding Effectiveness Measurements on Enclosure Level *Proceedings of IEEE International symposium on electromagnetic compatibility*. 2018. P.730-734. https://doi.org/10.1109/EMCEurope.2018.8485164
- 14. Hwang J.H., Park H.H., Hyoung C.H. et al. Quality factor and shielding effectiveness measurement of an antenna-free enclosure in a nested reverberation chamber. *IEEE Transactions on Electromagnetic Compatibility*. 2020. V.62. №6. P.2358-2367. https://doi.org/10.1109/TEMC.2020.2969433
- 15. Shourvarzi A., Joodaki M. Shielding effectiveness estimation of a metallic enclosure with an aperture using S-parameter analysis: analytic validation and experiment. *IEEE Transactions on Electromagnetic Compatibility*. 2016. V.59. №2. P.537-540. https://doi.org/10.1109/TEMC.2016.2615525
- 16. НПФ «Микран». Анализаторы цепей скалярные P2M-40. Руководство по эксплуатации. Общие сведения [web]. *Микран*. Дата обращения 21.06.2022. URL: http://download.micran.ru/kia/Manual/Library/R2M/User_Manual/R2M-40-UM-001_part1.pdf.
- 17. IEC 62132.2 2010. Integrated circuits. Mesurement of electromagnetic immunity. Part 2.: Measurement of radiated immunity. TEM cell and wideband TEM cell method. Geneva, International electrotechnical commission. 2010. 54 p.
- 18. IEC 61967.2 2005. Integrated circuits. Measuremet of electromagnetic emissions. 150 kHz to 1 GHz. Part 2: Measurement of rasiated emissions. TEM cell and wideband TEM cell method. Geneva, International electrotechnical commission. 2010. 52 p.
- 19. Онищенко И.А., Иванов А.А. Разработка программы для вычисления эффективности экранирования корпуса с апертурой на основе модуля коэффициента отражения. Сборник трудов «Наука и практика: проектная деятельность от идеи до внедрения». Томск. 2020. С.283-285.
- 20. Иванов А.А. *Методы, программы и устройство для оценки эффективности экранирования типовых экранирующих конструкций радиоэлектронных средств*. Диссертация на соискание ученой степени кандидата технических

- наук. Томский государственный университет систем управления и радиоэлектроники. Томск. 2021. 182 с. URL: https://postgraduate.tusur.ru/urls/3q9chivd
- 21. IEEE STD 1597.2 2010. IEEE recommended practice for validation of computational electromagnetics, computer modeling and simulations. New York, IEEE Inc. 2011. 124 p.
- 22. РусИнтелл. АИ 5-0 антенна измерительная дипольная [web]. *РусИнтелл*. Дата обращения: 21.06.2022. URL: http://rusintell.ru/catalog/ai-5-0
- 23. R&S ZNB. Vector network analyzer. Specifications [web]. *Rohde & Schwarz*. Дата обращения: 21.06.2022. URL: https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_common_library/dl_brochures_and_datash_eets/pdf_1/ZNB_dat-sw_en_5214-5384-22_v1400.pdf

Для цитирования:

Иванов А.А., Комнатнов М.Е. Устройство для косвенных измерений эффективности электромагнитного экранирования малогабаритных экранирующих конструкций. *Журнал радиоэлектроники* [электронный журнал]. 2022. №11. https://doi.org/10.30898/1684-1719.2022.11.1