Journal of Radio Electronics. eISSN 1684-1719. 2023. 11
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.11.19

 

INFORMATION INFRASTRUCTURE ENSURING TIMELY DETECTION OF MESO-SCALE CONVECTIVE COMPLEXES

 

V.P. Savorskiy, A.P. Chernushich, O.Yu. Panova

 

Kotelnikov IRE RAS (Branch in Fryazino)

141120, Russia, Fryazino, Vvedensky Sq. 1

 

The paper was received September14, 2023

 

Abstract. The results of the development of an information infrastructure that provides timely detection of mesoscale convective complexes (MCC) are described, automatic procedures that implement the basic functionality of this infrastructure are described. Along with the detection of MCC, the described procedures allow us to identify zones of deep convection, i.e. such MCC that develop according to the scenario of "daytime storms", i.e. intense thunderstorms, squalls and tornadoes. Information infrastructure, provides integration of satellite microwave radiometric sensing data of geostationary observations in the visible and IR range. This integration is designed to ensure the restoration of atmospheric temperature and humidity profiles in the conditions of emergency atmospheric situations caused by the MCC. The methodological feature of the developed approach is to minimize the probability of stopping the data analysis system when access to individual sources of a priori information is terminated. This technique is based on the use of an automatic system of adaptation to changes in access conditions and the application of the results of model forecasts of the development of atmospheric processes.

Key words: mesoscale convective complexes, atmospheric hazards, emergencies, integrated monitoring, satellite data, specialized information systems.

Financing: The work was carried out within the framework of the state task of the Kotelnikov Institute of Radioengineering and Electronics (IRE) of Russian Academy of Sciences.

Corresponding author: Savorskiy Viktor Petrovich, savor@inbox.ru

Acknowledgment: The authors express special gratitude to the Satellite Triptych Technology Department of the Space Research Institute of the Russian Academy of Sciences for providing geostationary data, and the Japanese Aerospace Exploration Agency JAXA for providing microwave radiometric sounding data.

 

References

1. Kutuza B.G., Danilychev M.V., Yakovlev O.I. Sputnikovyi monitoring Zemli: Mikrovolnovaya radiometriya atmosfery i poverkhnosti [Microwave radiometry of the atmosphere and surface: Satellite monitoring of the Earth]. М.: LENAND.2016. 336 p. (In Russian)

2. Maddox R. A. Mesoscale convective complexes. Bulletin of the American Meteorological Society. 1980. P. 1374-1387.

3. Nazarenko A.V. Opasnye prirodnye yavleniya. Chast' III. Opasnye yavleniya pogody konvektivnogo proiskhozhdeniya [Natural hazards. Part III. Dangerous weather phenomena of convective origin]. Voronezh, Izdatel'stvo VGU Publ. 2008. 62 p. (In Russian)

4. Shikhov A.N., Chernokulsky A.V., Sprygin A.A., Azhigov I.O. Identifikatsiya mezomasshtabnykh konvektivnykh oblachnykh sistem so smerchami po sputnikovym dannym [Identification of mesoscale convective cloud systems with tornadoes using satellite data]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2019. V.16. №1. P.223-236. https://doi.org/10.21046/2070-7401-2019-16-1-223-236 (In Russian)

5. Alekseevskii N.I., Magritskii D.V., Koltermann P.K., Toporov P.A., Shkol'nyi D.I., Belyakova P.A. Navodneniya na Chernomorskom poberezh'e Krasnodarskogo kraya [Inundatios on the Black Sea coast of Krasnodar krai]. Vodnye resursy. 2016. V.43. №1. P.3-17. https://doi.org/10.7868/s032105961601003x (In Russian)

6. Savorskiy V.P., Akvilonova A.B., Kibardina I.N., Panova O.Yu., Danilychev M.V. Orbital'nye SVCH-radiometricheskie sistemy vlazhnostnogo zondirovaniya atmosfery diapazona 183, 31 GGts [Orbital microwave radiometric systems for humidity sensing of the atmosphere in the range of 183.31 GHz]. Proceedings of the XIV All-Russian Scientific and Technical Conference «Radiolokatsiya i radiosvyaz'». Moscow. 2020. P.187-192. (In Russian)

7. Gayfulin D.R., Tsyrulnikov M.D., Svirenko P.I., Gorbunov M.E., Uspensky A.B., Kramchaninova E.K., Uspensky S.A. Ispol'zovanie informatsii sputnikovogo mikrovolnovogo radiometra MTVZA-GYA v sisteme usvoeniya dannykh Gidromettsentra Rossii [The usage of MTVZA-GYA satellite microwave radiometer observations in the data assimilation system of the hydrometcenter of Russia]. Meteorologiya i gidrologiya. 2017. №9. P.36-47. (In Russian)

8. Mitnik L.M., Mitnik M.L., Zabolotskikh E.V. Sputnik Yaponii GCOM-W1: modelirovanie, kalibrovka i pervye rezul'taty vosstanovleniya parametrov okeana i atmosfery [Japan satellite GCOM-W1: simulation, calibration and first results of the retrievals of atmospheric and oceanic parameters]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2013. V.10. №3. P.135-141. (In Russian)

9. Vasiliev V.S., Panova O.Yu., Savorskiy V.P. Information infrastructure ensuring virtual integration of the data of the satellite microwave remote radiometric sensing. Radiophysics and Quantum Electronics. 2022. V.64. P.629-640. https://doi.org/10.1007/s11141-022-10165-4

10. Rosenfeld D., Ulbrich C. W. Cloud microphysical properties, processes, and rainfall estimation opportunities. Meteorological Monographs. 2003. V.30. 52. P. 237-258. https://doi.org/10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2

11. Rosenfeld D., Lensky I., Kerkmann J. Applications of Meteosat Second Generation (MSG)–Cloud processes [web].  Darmstadt: EUMETSAT, 2004. Date of access: 12.09.2023. URL: https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fresources.eumetrain.org%2FIntGuide%2FPowerPoints%2FApplication%2F00_convection_day.ppt&wdOrigin=BROWSELINK.

12. Heymsfield A. J. et al. Homogeneous ice nucleation in subtropical and tropical convection and its influence on cirrus anvil microphysics. Journal of the atmospheric sciences.  2005. V.62. 1. P. 41-64.

13. Kerkmann J. Understanding Convective Clouds through the Eyes of (MSG) [web].  Cloud Particle Size, 2016. Date of access: 12.09.2023. URL: https://www.slideserve.com/israel/understanding-convective-clouds-through-the-eyes-of-msg-cloud-particle-size

14. Zeschke B. The Day Convection RGB product [web].  Australian Bureau of Meteorology, 2015. Date of access: 12.09.2023. URL: http://www.virtuallab.bom.gov.au/files/2814/4100/7318/DayConvectionRGBTOTALoneslide_Compatibility_Mode.pdf

15. Kerkmann J. Applications of Meteosat Second Generation (MSG). RGB Images: Part 4. RGB Composites with Channels 01-11 and Their Interpretation [web].  Eumetsat. Version 0.6, 2004. Date of access: 12.09.2023.  URL:https://www.slideserve.com/calix/applications-of-meteosat-second-generation-msg.

16. Kerkmann J. RGB 05-06, 04-09, 03-01 ("Day Convective Storms") [web].  Eumetsat, 2010. Date of access: 12.09.2023.  URL: https://www-cdn.eumetsat.int/files/2020-09/pdf_il_10_08_04.pdf.

17. Instrument: SEVIRI [web]. Observing Systems Capability Analysis and Review Tool. World Meteorological Organization. Date of access: 12.09.2023. URL: https://space.oscar.wmo.int/instruments/view/seviri

18. Instrument:  AHI [web]. Observing Systems Capability Analysis and Review Tool. World Meteorological Organization. Date of access: 12.09.2023. URL: https://space.oscar.wmo.int/instruments/view/ahi

19. Himawari 8 [web].  Wikipedia. Date of access: 12.09.2023.  URL: https://en.wikipedia.org/wiki/Himawari_8

20. Instrument:  ABI [web]. Observing Systems Capability Analysis and Review Tool. World Meteorological Organization. Date of access: 12.09.2023. URL: https://space.oscar.wmo.int/instruments/view/abi

21. Instrument:  MSU-GS [web]. Observing Systems Capability Analysis and Review Tool. World Meteorological Organization. Date of access: 12.09.2023. URL: https://space.oscar.wmo.int/instruments/view/msu_gs

22. Ivanov V.V. et al. Vosstanovlenie polei meteorologicheskikh ehlementov po sputnikovym izobrazheniyam oblachnosti [Restoration of fields of meteorological elements from satellite images of clouds]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2006. V.3. №1. P.280-286. (In Russian)

 

For citation:

Savorskii V.P., Chernushich A.P., Panova O.Yu. Information infrastructure ensuring timely detection of meso-scale convective complexes // Journal of radio electronics. – 2023. – №. 11. https://doi.org/10.30898/1684-1719.2023.11.19 (In Russian)