Journal of Radio Electronics. eISSN 1684-1719. 2023. 11
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.11.27

 

REFRACTOMETRIC BLOOD PLASMA PROTEIN DETECTOR BASED ON TILTED FIBER BRAGG GRATING

WITH A FUNCTIONAL ANTIBODY COATING

 

Dolzhenko E.I., Tomyshev K.A., Butov O.V.

 

Kotelnikov IRE RAS

125009, Russia, Moscow, Mokhovaya str., 11, b.7

 

The paper was received November 28, 2023.

 

Abstract. The article demonstrates the results of the development of a selective fiber optic biosensor based on tilted fiber Bragg grating. The underlying principle of the sensor involves shifts in the transmission spectrum of tilted grating, which transforms in accordance with the changes in the composition of the external environment. Optical signal propagating along the fiber couples with a tilted grating resulting in a number of cladding modes which form an evanescent field of the sensor directly interacting with the external environment. Potentially high sensitivity to the refractive index of the environment opens up prospects of using such structures as high-precision sensors of solution concentrations; however, for applications in the field of biomedicine, selective sensitivity is critically important, providing unambiguous detection of individual target components in a multicomponent composition. To ensure the selective sensitivity of the sensors presented in this work, functional coatings of antibodies against two types of human blood protein molecules were used in their design. The paper describes a technique for creating experimental samples of biosensors, involving inscription of fiber Bragg gratings and deposition of functional antibody-based coatings onto the surface of the fiber. Experimental results are presented highlighting problems occurring during detection with a single sensor. As a solution, the work proposes a differential measurement scheme involving two sensors modified against two different proteins. According to the results of studies during which fibrinogen and D-dimer were used as target proteins, the selective detection of the studied proteins in concentrations of up to 0.1 mg/ml is clearly demonstrated, which was achieved through the use of a differential measurement scheme.

Key words: fiber sensorics; biosensorics; tilted fiber Bragg gratings; functional coatings.

Financing: The work was carried out within the framework of the state assignment of the V.A. Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences.

Corresponding author: Dolzhenko Egor Igorevich, dolzhenko@phystech.edu

References

1. Nechaeva N. L., Sorokina O. N., Konstantinova T. S., Vasilyeva A. D., Yurina L. V., Byzova N. A., Bugrova A. E., Yanovich S. V., Eremenko A. V., Kurochkin I. N. Simultaneous express immunoassay of multiple cardiac biomarkers with an automatic platform in human plasma // Talanta. ‒ 2021. ‒ T. 224. ‒ C. 121860. (https://doi.org/10.1016/j.talanta.2020.121860)

2. Nechaeva N., Sorokina O., Konstantinova T., Vasil’eva A., Yurina L., Byzova N., Bugrova A., Podoinitsyn S., Eremenko A., Kurochkin I. Rapid Automatic Determination of Four Cardiomarkers in the Blood Plasma of Patients with Cardiopathologies // Journal of Analytical Chemistry. ‒ 2022. ‒ T. 77, № 5. ‒ C. 531-536. (https://doi.org/10.1134/S1061934822050094)

3. Fiber optic sensors. / Yin S., Ruffin P. B., Francis T.: CRC press, 2017.

4. Ascorbe J., Corres J. M., Arregui F. J., Matias I. R. Recent developments in fiber optics humidity sensors // Sensors. ‒ 2017. ‒ T. 17, № 4. ‒ C. 893. (https://doi.org/10.3390/s17040893)

5. Bai H., Li S., Barreiros J., Tu Y., Pollock C. R., Shepherd R. F. Stretchable distributed fiber-optic sensors // Science. ‒ 2020. ‒ T. 370, № 6518. ‒ C. 848-852. (https://doi.org/10.1126/science.aba5504)

6. Caucheteur C., Guo T., Albert J. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection // Analytical and bioanalytical chemistry. ‒ 2015. ‒ T. 407, № 14. ‒ C. 3883-3897. (https://doi.org/10.1007/s00216-014-8411-6)

7. Fiber optic sensors: fundamentals and applications. / Krohn D. A., MacDougall T., Mendez A.: Spie Press Bellingham, WA, 2014. (http://dx.doi.org/10.1117/3.100291)

8. Stepanov K. V., Zhirnov A. A., Chernutsky A. O., Koshelev K. I., Pnev A. B., Lopunov A. I., Butov O. V. The sensitivity improvement characterization of distributed strain sensors due to weak fiber Bragg gratings // Sensors. ‒ 2020. ‒ T. 20, № 22. ‒ C. 6431. (https://doi.org/10.3390/s20226431)

9. Butov O. V., Bazakutsa A. P., Chamorovskiy Y. K., Fedorov A. N., Shevtsov I. A. All-fiber highly sensitive Bragg grating bend sensor // Sensors. ‒ 2019. ‒ T. 19, № 19. ‒ C. 4228. (https://doi.org/10.3390/s19194228)

10. Bado M. F., Casas J. R. A review of recent distributed optical fiber sensors applications for civil engineering structural health monitoring // Sensors. ‒ 2021. ‒ T. 21, № 5. ‒ C. 1818. (https://doi.org/10.3390/s21051818)

11. Manuylovich E., Tomyshev K., Butov O. V. Method for Determining the Plasmon Resonance Wavelength in Fiber Sensors Based on Tilted Fiber Bragg Gratings // Sensors. ‒ 2019. ‒ T. 19, № 19. ‒ C. 4245. (https://doi.org/10.3390/s19194245)

12. Zhou K., Chen X., Zhang L., Bennion I. High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings // Electronics Letters. ‒ 2004. ‒ T. 40, № 4. ‒ C. 1. (https://doi.org/10.1049/el:20040177)

13. Lee S.-M., Saini S. S., Jeong M.-Y. Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors // IEEE Photonics Technology Letters. ‒ 2010. ‒ T. 22, № 19. ‒ C. 1431-1433. (https://doi.org/10.1109/LPT.2010.2057416)

14. Ishaq I. M., Quintela A., James S. W., Ashwell G. J., Lopez-Higuera J. M., Tatam R. P. Modification of the refractive index response of long period gratings using thin film overlays // Sensors and Actuators B: Chemical. ‒ 2005. ‒ T. 107, № 2. ‒ C. 738-741. (https://doi.org/10.1016/j.snb.2004.12.004)

15. Albert J., Shao L. Y., Caucheteur C. Tilted fiber Bragg grating sensors // Laser & Photonics Reviews. ‒ 2013. ‒ T. 7, № 1. ‒ C. 83-108. (https://doi.org/10.1002/lpor.201100039)

16. Voisin V., Pilate J., Damman P., Mégret P., Caucheteur C. Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors // Biosensors and Bioelectronics. ‒ 2014. ‒ T. 51. ‒ C. 249-254. (https://doi.org/10.1016/j.bios.2013.07.030)

17. Fiber bragg gratings. / Kashyap R.: Academic press, 2009.

18. Vasil'ev S. A., Medvedkov O. I., Korolev I. G. e., Bozhkov A. S., Kurkov A. S., Dianov E. M. Fibre gratings and their applications // Quantum electronics. ‒ 2005. ‒ T. 35, № 12. ‒ C. 1085. (https://doi.org/10.1070/QE2005v035n12ABEH013041)

19. Hill K. O., Meltz G. Fiber Bragg grating technology fundamentals and overview // Journal of lightwave technology. ‒ 1997. ‒ T. 15, № 8. ‒ C. 1263-1276. (https://doi.org/10.1109/50.618320)

20. Butov O. V., Tomyshev K., Nechepurenko I., Dorofeenko A. V., Nikitov S. A. Tilted fiber Bragg gratings and their sensing applications // Physics–Uspekhi. ‒ 2021. ‒ T. 2022, № 65. (https://doi.org/10.3367/UFNe.2021.09.039070)

21. Guo T., Liu F., Guan B.-O., Albert J. Tilted fiber grating mechanical and biochemical sensors // Optics & Laser Technology. ‒ 2016. ‒ T. 78. ‒ C. 19-33. (https://doi.org/10.1016/j.optlastec.2015.10.007)

22. Tomyshev K., Manuilovich E., Tazhetdinova D., Dolzhenko E., Butov O. V. High-precision data analysis for TFBG-assisted refractometer // Sensors and Actuators A: Physical. ‒ 2020. ‒ T. 308. ‒ C. 112016. (https://doi.org/10.1016/j.sna.2020.112016)

23. Tomyshev K. A., Tazhetdinova D. K., Butov O. V. High-resolution fiber plasmon sensor // 2017 Progress In Electromagnetics Research Symposium-Spring (PIERS) ‒IEEE, 2017. ‒ C. 53-56. (https://doi.org/10.1109/PIERS.2017.8261705)

24. Feng D., Zhou W., Qiao X., Albert J. High resolution fiber optic surface plasmon resonance sensors with single-sided gold coatings // Optics Express. ‒ 2016. ‒ T. 24, № 15. ‒ C. 16456-16464. (https://doi.org/10.1364/OE.24.016456)

25. Chubchev E. D., Tomyshev K. A., Nechepurenko I. A., Dorofeenko A. V., Butov O. V. Machine learning approach to data processing of TFBG-assisted SPR sensors // Journal of Lightwave Technology. ‒ 2022. ‒ T. 40, № 9. ‒ C. 3046-3054.

26. Lin H.-Y., Tsao Y.-C., Tsai W.-H., Yang Y.-W., Yan T.-R., Sheu B.-C. Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED // Sensors and actuators A: Physical. ‒ 2007. ‒ T. 138, № 2. ‒ C. 299-305. (https://doi.org/10.1016/j.sna.2007.05.015)

27. Marquez-Cruz V., Albert J. High resolution NIR TFBG-assisted biochemical sensors // Journal of Lightwave Technology. ‒ 2015. ‒ T. 33, № 16. ‒ C. 3363-3373. (https://doi.org/10.1109/JLT.2015.2431912)

28. Cao Y., Zhang J., Yang Y., Huang Z., Long N. V., Fu C. Engineering of SERS substrates based on noble metal nanomaterials for chemical and biomedical applications // Applied Spectroscopy Reviews. ‒ 2015. ‒ T. 50, № 6. ‒ C. 499-525. (https://doi.org/10.1080/05704928.2014.923901)

29. Ribaut C., Voisin V., Malachovská V., Dubois V., Mégret P., Wattiez R., Caucheteur C. Small biomolecule immunosensing with plasmonic optical fiber grating sensor // Biosensors and Bioelectronics. ‒ 2016. ‒ T. 77. ‒ C. 315-322. (https://doi.org/10.1016/j.bios.2015.09.019)

30. Riboh J. C., Haes A. J., McFarland A. D., Ranjit Yonzon C., Van Duyne R. P. A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion // The Journal of Physical Chemistry B. ‒ 2003. ‒ T. 107, № 8. ‒ C. 1772-1780. (https://doi.org/10.1021/jp022130v)

31. Rich R. L., Myszka D. G. Survey of the 2009 commercial optical biosensor literature // Journal of Molecular Recognition. ‒ 2011. ‒ T. 24, № 6. ‒ C. 892-914. (https://doi.org/10.1002/jmr.1138)

32. Ricciardi A., Crescitelli A., Vaiano P., Quero G., Consales M., Pisco M., Esposito E., Cusano A. Lab-on-fiber technology: a new vision for chemical and biological sensing // Analyst. ‒ 2015. ‒ T. 140, № 24. ‒ C. 8068-8079. (https://doi.org/10.1039/C5AN01241D)

33. Lobry M., Fasseaux H., Loyez M., Chah K., Goormaghtigh E., Wattiez R., Chiavaioli F., Caucheteur C. Plasmonic fiber grating biosensors demodulated through spectral envelopes intersection // Journal of Lightwave Technology. ‒ 2021. ‒ T. 39, № 22. ‒ C. 7288-7295. (http://dx.doi.org/10.1109/JLT.2021.3112854)

34. Ortega-Gomez A., Loyez M., Lobry M., Chah K., Zubia J., Villatoro J., Caucheteur C. Plasmonic sensors based on tilted Bragg gratings in multicore optical fibers // Optics express. ‒ 2021. ‒ T. 29, № 12. ‒ C. 18469-18480. (https://doi.org/10.1364/OE.430181)

35. Armbruster D. A., Tillman M. D., Hubbs L. M. Limit of detection (LQD)/limit of quantitation (LOQ): comparison of the empirical and the statistical methods exemplified with GC-MS assays of abused drugs // Clinical chemistry. ‒ 1994. ‒ T. 40, № 7. ‒ C. 1233-1238. (https://doi.org/10.1093/clinchem/40.7.1233)

36. Shrivastava A., Gupta V. B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods // Chron. Young Sci. ‒ 2011. ‒ T. 2, № 1. ‒ C. 21-25. (https://doi.org/10.4103/2229-5186.79345)

For citation:

Dolzhenko E.I., Tomyshev K.A., Butov O.V. Refractometric blood plasma protein detector based on tilted fiber bragg grating with a functional antibody coating // Journal of Radio Electronics. – 2023. – №. 11. https://doi.org/10.30898/1684-1719.2023.11.27 (In Russian)