Journal of Radio Electronics. eISSN 1684-1719. 2023. ¹11
Contents

Full text in Russian (pdf)

Russian page

 

DOI: https://doi.org/10.30898/1684-1719.2023.11.28

 

SPIN WAVES IN ONE-DIMENSIONAL MAGNONIC CRYSTALS WITH TWO SPATIAL PERIODS

 

Yu.V. Nikulin, S.L. Vysotskii, Yu.V. Khivintsev, Yu.A. Filimonov

 

Kotelnikov IRE RAS, Saratov branch

410019, Russia, Saratov, Zelenaya str.,38

 

The paper was received November 27, 2023

 

Abstract. The propagation of surface and backward volume magnetostatic waves in a one-dimensional magnonic crystal in the form of a yttrium iron garnet film with two periodic lattices of grooves with different periods etched on its surface was experimentally studied. It is shown that the form of the frequency dependence of the transmission coefficient of magnetostatic waves in such crystal is not a simple superposition of similar dependences for two magnonic crystals with the same lattice periods.

Key words: magnonic crystal, magnetostatic waves, Bragg resonances.

Financing: The work was carried out within the framework of the state task “Spintronics” (FFWZ-2022-0009).

Corresponding author: Vysotskii Sergey Lvovich, vysotsl@gmail.com

 

References

1. Gulyaev Y. V., Nikitov S. A. Magnonic crystals and spin waves in periodic structures // Doklady Physics. – Moscow, Russia: Maik nauka/Interperiodica Publishing; Woodbury, NY: Distributed by the American Institute of Physics, 1998-, 2001. – V. 46. – N. 10. – P. 687-689.

https://doi.org/ 10.3367/UFNe.0185.201510m.1099

2. Ustinov A. B., Drozdovskii A. V., Kalinikos B. A. Multifunctional nonlinear magnonic devices for microwave signal processing // Applied physics letters. – 2010. – Ò. 96. – ¹. 14. https://doi.org/10.1063/1.3386540

3. Serga A. A., Chumak A. V., Hillebrands B. YIG magnonics // Journal of Physics D: Applied Physics. – 2010. – V. 43. – N. 26. – P. 264002. https://doi.org/ 10.1088/0022-3727/43/26/264002

4. S. L. Vysotskii et al. The spectrum of the spin_wave excitations of the tangentially magnetized 2d hexagonal ferrite magnonic crystal // Journal of Communications Technology and Electronics. – 2010. – V. 55. – N. 7. – p. 800–809.

https://doi.org/ 10.1134/S1064226910070107

5. Chumak A. V. et al. Scattering of surface and volume spin waves in a magnonic crystal // Applied Physics Letters. – 2009. – V. 94. – N. 17. – P.083906. https://doi.org/10.1063/1.3127227

6. Vysotskii S. L. et al. Effect of Ferrite Magnonic Crystal Metallization

on Bragg Resonances of Magnetostatic Surface Waves // Technical Physics Letters. – 2011. – V. 37. – N. 11. – P. 1024–1026. https://doi.org/ 10.1134/S1063785011110150

7. Ustinov A. B. et al. Observation of spin-wave envelope solitons in periodic magnetic film structures // Journal of Experimental and Theoretical Physics Letters. – 2008. – V. 88. – Iss. 1. – P. 31–35. https://doi.org/10.1134/S0021364008130079

8. Inoue M. et al. Investigating the use of magnonic crystals as extremely sensitive magnetic field sensors at room temperature // Applied Physics Letters. – 2011. – V. 98. – N. 13. – P. 132511. https://doi.org/10.1063/1.3567940

9. Kryshtal R. G., Medved A. V. Surface acoustic wave in yttrium iron garnet as tunable magnonic crystals for sensors and signal processing applications // Applied Physics Letters. – 2012. – V. 100. – N. 19. – P.192410. https://doi.org/10.1063/1.4714507

10. Fetisov Y. K., Ostrovskaya N. V., Popkov A. F. Parametrical interaction of magnetostatic volume waves in a spacetime periodic magnetic field // Journal of applied physics. – 1996. – V. 79. – N. 8. – P. 5730-5732. https://doi.org/10.1063/1.362233

11. Chumak A. V. et al. A current-controlled, dynamic magnonic crystal // Journal of Physics D: Applied Physics. – 2009. – V. 42. – N. 20. – P. 205005. https://doi.org/10.1088/0022-3727/42/20/205005

12. Morozova M. A. et al. Laser-induced Bragg resonances in ferrit/semiconductor heterostructure // Applied Physics Letters. – 2023. – V. 123. – N. 20. – P.202406. https://doi.org/10.1063/5.0177337

13. Mruczkiewicz M. et al. Observation of magnonic band gaps in magnonic crystals with nonreciprocal dispersion relation // Physical Review B. – 2014. – V. 90. – N. 17. – P. 174416. https://doi.org/10.1103/PhysRevB.90.174416

14. Âûñîöêèé Ñ.Ë., Ïàâëîâ Å. Ñ. Îðèåíòàöèîííàÿ çàâèñèìîñòü ïîëîæåíèÿ è øèðèíû ïîëîñ íåïðîïóñêàíèÿ â ñïåêòðå ïîâåðõíîñòíûõ ìàãíèòîñòàòè÷åñêèõ âîëí â îäíîìåðíîì ôåððèòîâîì ìàãíîííîì êðèñòàëëå [Orientation dependence of the position and width of stopbands in the spectrum of surface magnetostatic waves in a one-dimensional ferrite magnon crystal] // Ãåòåðîìàãíèòíàÿ ìèêðîýëåêòðîíèêà. – 2010. – ¹8. – C.116-120

15. Vysotskii S. L. et al. Spectrum and Losses of Surface Magnetostatic Waves

in a 1D Magnon Crystal // Technical Physics. – 2011. – V. 56. – N. 2 – P. 308–310. https://doi.org/10.1134/S1063784211020289

16. Vysotskii S.L.· et al. Surface spin waves in one-dimensional magnonic crystals with two spatial periods // Technical Physics Letters. – V.41. – N.11. – P. 1099-1102. https://doi.org/10.1134/S1063785015110267

17. Damon R. W., Eshbach J. R. Magnetostatic modes of a ferromagnet slab // Journal of Physics and Chemistry of Solids. – 1961. – V. 19. – N. 3-4. – P. 308-320. . https://doi.org/10.1016/0022-3697(61)90041-5

18 . Filimonov Y. et al. Magnetostatic surface wave propagation in a one-dimensional magnonic crystal with broken translational symmetry // Applied Physics Letters. – 2012. – Ò. 101. – ¹. 24. – P.242408. https://doi.org/10.1063/1.4771126

19. Donahue M. J., Porter D. G. OOMMF user's guide, version 1.0. – 1999.

For citation:

Nikulin Yu.V., Vysotskii S.L., Khivintsev Yu.V., Filimonov Yu.A. Spin waves in one-dimensional magnonic crystals with two spatial periods // Journal of radio electronics. – 2023. – ¹. 11. https://doi.org/10.30898/1684-1719.2023.11.28 (In Russian)