

DOI: https://doi.org/10.30898/1684-1719.2023.11.29

УДК: 621.372.413, 537.876.4

ИЗУЧЕНИЕ ПРИНЦИПОВ ПОСТРОЕНИЯ ШИРОКОПОЛОСНОЙ КОЛЕБАТЕЛЬНОЙ СВЧ СИСТЕМЫ НА ПРИМЕРЕ РЕЗОНАТОРА ФАБРИ-ПЕРО

М.Ю. Захарченко, Ю.Ф. Захарченко

ИРЭ им. В.А. Котельникова РАН, Саратовский филиал 410019, Саратов, ул. Зеленая, д. 38

Статья поступила в редакцию 29 ноября 2023 г.

Аннотация. Конструкции клистронов с 2 – 4 резонаторами обеспечивают большой КПД и высокий коэффициент усиления, но полоса усиливаемых частот составляет 0,1... 0,5 % из-за применения резонаторов с большой добротностью. Известный метод расширения полосы усиливаемых частот в сантиметровом диапазоне до 7...12 % и в миллиметровом до 1...2 % заключается в отстройке резонансной частоты промежуточных резонаторов на несколько процентов от центральной частоты. Но в этом случае требуется использовать 10...12 резонаторов. В работе изучается возможность построения фазовращателя с отрицательной фазочастотной характеристикой для расширения полосы пропускания резонатора. В качестве фазовращателя исследуется система в виде металлической пленки на поверхности слоя полупроводника. Показано, что в миллиметровом диапазоне волн при отражении плоской электромагнитной волны от поверхности полупроводника фазочастотная характеристика входного сопротивления системы состоит из цепочки частотных интервалов с переходами от положительной характеристики к отрицательной характеристике и наоборот. Рассматривается применение фазовращателя в многослойном резонаторе типа Фабри-Перо. Показана возможность расширения в 2 – 4 раза резонансной полосы

длин волн $\Delta\lambda/\lambda_0$ при усилении в 10-20 раз электрического поля во внутреннем слое W резонатора ($\Delta\lambda/\lambda_0$ соответствует 0.707 max $|G(\lambda_0)|$, где $G(\lambda)$ — функция усиления поля, λ_0 — резонансная длина волны). Увеличение проводимости полупроводника σ_F приводит к преобразованию амплитудно-частотной характеристики $G(\lambda)$ с двумя максимумами к форме с одним максимумом с переходом через плоскую вершину. При этом значение max $|G(\lambda_0)|$ уменьшается, а $\Delta\lambda/\lambda_0$ увеличивается. Для случая, когда характеристика функции $G(\lambda)$ имеет плоскую вершину, увеличение волнового сопротивления слоя W при одновременном уменьшении σ_F и выборе оптимальной толщины слоя W при приводит к увеличению max $|G(\lambda_0)|$. Но значение $\Delta\lambda/\lambda_0$ уменьшается.

Ключевые слова: резонатор, фазовращатель с отрицательной фазочастотной характеристикой, полупроводник.

Финансирование: Работа выполнена в рамках государственного задания Института радиотехники и электроники им. В.А. Котельникова РАН.

Автор для переписки: Захарченко Юрий Федорович, zaharchenko201146@mail.ru

Введение

В системах телекоммуникации и радиолокации в качестве усилителей средней и большой мощности широко используются пролетные клистроны [1,2].

Применение в клистронах высокодобротных резонаторов позволяет использовать электронно-оптические системы небольшой длины, что дает возможность пропускать через пространство взаимодействия электронные пучки с плотностью тока до $200...400 \, \text{A/cm}^2$ [2,3]. Благодаря этому клистроны характеризуются большими электронным (до $50 \, \%$) и техническим (до $70 \, \%$) КПД, высоким коэффициентом усиления (до $60 \, \text{дБ}$). Однако типовые конструкции 2-4 резонаторных клистронов имеют полосу усиливаемых частот не более 0,1... $0,5 \, \%$ из-за необходимости применения резонаторов с большой добротностью [1-3].

Известный метод расширения полосы усиливаемых частот в сантиметровом диапазоне до 7...12 % [2-6] и в миллиметровом — до 1...2 % [3, 7, 8] заключается в отстройки резонансной частоты промежуточных резонаторов на несколько процентов от центральной частоты. Но при этом требуется использовать 10...12 резонаторов с добротностью 75...150.

Другим возможным путем расширения резонансной полосы является применение фазовращателей с отрицательной фазочастотной характеристикой. Таким свойством, например, обладает LCR-контур с параллельным резонансом тока (рис. 1a). Зависимость сопротивления Z_F контура от частоты f описывается выражением:

$$Z_{F}(\omega)/\rho_{LC} = \left| Z_{F}(\omega) \right| / \rho_{LC} \exp\left(j\theta_{F}(\omega)\right) = a\left(1 + jq\right) / \left(1 + q^{2}\right),$$

$$q(\omega) = a\left[1/\omega/\omega_{0} - \omega/\omega_{0}\right],$$

$$\omega = 2\pi f; \quad \omega_{0} = \sqrt{1/LC};$$

$$\rho_{LC} = \sqrt{L/C}, \quad a = R/\rho_{LC}.$$

$$(1)$$

Из (1) следует, что в полосе $\Delta \omega / \omega_0 = \pm 1/2 a + \sqrt{1 + (1/2 a)^2}$ функции $\operatorname{Re} Z_F(\omega)$ и $\operatorname{Im} Z_F(\omega)$ (рис. 1б) задают отрицательную фазочастотную характеристику для $\theta_F(\omega)$ (рис. 1в).

Авторами было обнаружено, что в миллиметровом диапазоне волн при отражении плоской электромагнитной волны от системы в виде металлической пленки на поверхности слоя полупроводника фазочастотная характеристика входного сопротивления системы состоит из цепочки частотных интервалов с переходами положительной характеристики к отрицательной и наоборот. В работе приводятся результаты исследований, демонстрирующие возможность использования данного явления для расширения резонансной полосы частот на примере модели многослойного резонатора типа Фабри-Перо (рис. 2).

Рис. 1. Схема контура (а). Графики функций Re $Z_F(\omega)$ (кривая 1) и Im $Z_F(\omega)$ (кривая 2) (б) и график функции $\theta_F(\omega)$ (в) для a=1.

Рис. 2. Модель многослойной резонансной системы типа Фабри-Перо.

Резонатор содержит фазовращатель в виде полупроводящего слоя F толщиной Δ_F с проводимостью σ_F и относительными диэлектрической ε_F и магнитной μ_F проницаемостями. Внешняя поверхность слоя F содержит отражающее зеркало, а внутренняя примыкает к слою W. Слой W, толщиной Δ_W и с ε_W , μ_W , является внутренним пространством резонатора. К слою W примыкает внешняя среда I с μ_I и ε_I . В среде I распространяется плоская электромагнитная волна, возбуждающая резонатор на длине волны λ . Здесь и далее величины Δ_F , Δ_W и λ выражены в метрах, σ_F — в Om^{-1} ·м.

1. Математический аппарат

Электромагнитные поля в средах F, W и I задаются выражениями [9]:

$$E_{y}^{F}(z') = E^{F+} e^{-\gamma_{F} k_{F} z'} + E^{F-} e^{\gamma_{F} k_{F} z'},$$

$$H_{x}^{F}(z') = j \left(\gamma_{F} / \rho_{0} \right) \sqrt{\varepsilon_{F} / \mu_{F}} \left(E^{F+} e^{-\gamma_{F} k_{F} z'} - E^{F-} e^{\gamma_{F} k_{F} z'} \right),$$

$$E_{y}^{W}(z) = E^{W+} e^{-jk_{W} z} + E^{W-} e^{jk_{W} z},$$

$$H_{x}^{W}(z) = -\left(1 / \rho_{0} \right) \sqrt{\varepsilon_{W} / \mu_{W}} \left(E^{W+} e^{-jk_{W} z} - E^{W-} e^{jk_{W} z} \right),$$

$$E_{y}^{I}(z) = E^{I+} e^{jk_{I} z} + E^{I-} e^{-jk_{I} z},$$

$$H_{x}^{I}(z) = -\left(1 / \rho_{0} \right) \sqrt{\varepsilon_{I} / \mu_{I}} \left(E^{I+} e^{jk_{I} z} - E^{I-} e^{-jk_{I} z} \right).$$

$$(2)$$

В выражениях (2) использованы обозначения [9]:

$$\gamma_{F} = \alpha_{F} + j\beta_{F},$$

$$\alpha_{F} = \sqrt{\left(\sqrt{1 + \chi^{2}} - 1\right)/2},$$

$$\beta_{F} = \sqrt{\left(\sqrt{1 + \chi^{2}} + 1\right)/2},$$

$$\chi = 60 \sigma_{F} \lambda/\varepsilon_{F}, \quad \rho_{0} = 120 \pi,$$

$$k_{F} = \sqrt{\varepsilon_{F} \mu_{F}} k, \quad k_{W} = \sqrt{\varepsilon_{W} \mu_{W}} k,$$

$$k_{I} = \sqrt{\varepsilon_{I} \mu_{I}} k, \quad k = 2\pi/\lambda,$$

$$\rho_{W} = \sqrt{\mu_{W}/\varepsilon_{W}} \rho_{0}, \quad \rho_{I} = \sqrt{\mu_{I}/\varepsilon_{I}} \rho_{0}$$
(3)

В среде ${\pmb F}$ краевое условие для поля $E_y^{\scriptscriptstyle F}(z)$ на поверхности зеркала имеет вид:

$$E^{F+} e^{-\gamma_F k_F \Delta_F} + E^{F-} e^{\gamma_F k_F \Delta_F} = 0.$$
 (4)

Входное сопротивление Z_{F} системы «зеркало и слой F» задается выражением [9]:

$$Z_F / \rho_0 = j \left(\sqrt{\mu_F / \varepsilon_F} / \gamma_F \right) \left(E^{F+} + E^{F-} \right) / \left(E^{F+} - E^{F-} \right).$$
 (5)

Учитывая (4) в (5), получим выражение для Z_F :

$$Z_F / \rho_0 = j \sqrt{\mu_F / \varepsilon_F} \tanh(\gamma_F k_F \Delta_F) / \gamma_F.$$
 (6)

Условия сшивания полей $E_y^F(z)$ и $E_y^W(z)$ на границе между слоями \pmb{F} и \pmb{W} имеют вид:

$$E^{W^{+}} e^{-jk_{W}\Delta_{W}} + E^{W^{-}} e^{jk_{W}\Delta_{W}} = E^{F^{+}} + E^{F^{-}},$$

$$-\sqrt{\varepsilon_{W}/\mu_{W}} \left(E^{W^{+}} e^{-jk_{W}\Delta_{W}} - E^{W^{-}} e^{jk_{W}\Delta_{W}} \right) = j\gamma_{F} \sqrt{\varepsilon_{F}/\mu_{F}} \left(E^{F^{+}} - E^{F^{-}} \right).$$
(7)

Дифференцируя (6), получим выражение для производной

$$\lambda d(Z_F/\rho_0)/d\lambda$$
:

$$\lambda \frac{d(Z_F/\rho_0)}{d\lambda} = \frac{j}{\gamma_F^2} \left[\left(k_F \Delta_F \right) \left(\sqrt{\mu_F/\epsilon_F} + \sqrt{\epsilon_F/\mu_F} \left(\gamma_F Z_F/\rho_0 \right)^2 \right) - \chi Z_F/\rho_0 \right]. \quad (8)$$

Для вывода функции $G(z,\lambda)$, задающей распределение поля волны $E_y^w(z)$ в слое W, используются условия сшивания полей $E_y^w(z)$ и $E_y^I(z)$ на границе между слоями W и I:

$$E^{I^{+}} + E^{I^{-}} = E^{W^{+}} + E^{W^{-}},$$

$$\sqrt{\varepsilon_{I}/\mu_{I}} \left(E^{I^{+}} - E^{I^{-}} \right) = \sqrt{\varepsilon_{W}/\mu_{W}} \left(E^{W^{+}} - E^{W^{-}} \right).$$
(9)

Учитывая (5) и (7) в (9), получим систему:

$$2\left(\frac{E^{W+}e^{-j\theta_{w}}}{1+Z_{F}/\rho_{W}}\right)\left(j\sin\theta_{W}+\left(Z_{F}/\rho_{W}\right)\cos\theta_{W}\right)=E^{I+}+E^{I-},$$

$$2\left(\frac{E^{W+}e^{-j\theta_{w}}}{1+Z_{F}/\rho_{W}}\right)\left(\cos\theta_{W}+j\left(Z_{F}/\rho_{W}\right)\sin\theta_{W}\right)=\left(\frac{\rho_{W}}{\rho_{I}}\right)\left(E^{I+}-E^{I-}\right).$$
(10)

Из (10) следует:

$$E^{W+} = -\frac{jE^{I+}\left(1 + Z_F/\rho_W\right)\exp\left(j\theta_W\right)}{\left(1 + \frac{\rho_I}{\rho_W}\frac{Z_F}{\rho_W}\right)\sin\theta_W - j\left(\frac{\rho_I}{\rho_W} + \frac{Z_F}{\rho_W}\right)\cos\theta_W},\tag{11}$$

$$E^{W^{-}} = \frac{jE^{I^{+}} \left(1 - Z_{F}/\rho_{W}\right) \exp\left(-j\theta_{W}\right)}{\left(1 + \frac{\rho_{I}}{\rho_{W}} \frac{Z_{F}}{\rho_{W}}\right) \sin\theta_{W} - j\left(\frac{\rho_{I}}{\rho_{W}} + \frac{Z_{F}}{\rho_{W}}\right) \cos\theta_{W}}.$$
(12)

Подставляя (11) и (12) в выражение для поля $E_y^w(z)$ в (3), получим функцию $G(z, \lambda)$:

$$G(z,\lambda) = E_y^W(z) / E^{I+} = h(\theta,\theta_W) / q(\theta_W), \qquad \theta = k_W z;$$
(13)

$$h(z,\theta_W) = 2\left\{ \sin(\theta_W - \theta) - j(Z_F / \rho_W) \cos(\theta_W - \theta) \right\}; \tag{14}$$

$$q(\theta_{W}) = \left(1 + \left(\rho_{I}/\rho_{W}\right)\left(Z_{F}/\rho_{W}\right)\right)\sin\theta_{W} - j\left(\left(\rho_{I}/\rho_{W}\right) + \left(Z_{F}/\rho_{W}\right)\right)\cos\theta_{W}. \quad (15)$$

Расчет функций Z_F (λ) и $|G(\lambda)|$ проводился в диапазоне длин волн 0.0025...0.015 (м) по формулам (6), (8) и (13) с помощью программного продукта «Математика 7» [10].

2. Результаты анализа свойств функции $Z_F(\lambda, \sigma_F, \Delta_F)$

В рассматриваемом диапазоне длин волн согласно (3) при $\sigma_F < 50$ выполняется условие $\beta_F >> \alpha_F$. В этом случае из (6) следует, что амплитудночастотные характеристики функций Re $Z_F(\lambda)$ и Im $Z_F(\lambda)$ описываются в виде цепочки интервалов длин волн, в которых имеют место периодические переходы функции Im $Z_F(\lambda)$ от значений с положительной производной к значениям с отрицательной производной (рис. 3б), а функция Re $Z_F(\lambda)$ в тех же частотных интервалах изменяется от максимальных значений до минимальных (рис. 3а).

Величины λ_0 и λ_P являются решениями уравнения, которое получено из ${\rm Im}\ Z_{\scriptscriptstyle F}(\lambda)=0$:

$$\sin \theta_F + (\alpha_F/\beta_F) \sinh(\alpha_F/\beta_F) \theta_F = 0, \quad \theta_F = 2\beta_F k_F \Delta_F.$$
 (16)

Для случая: $\sigma_F < 50$, $\epsilon_F > 10$, $\lambda < 0.02$ имеем $\chi < 0.5$, в силу чего $\alpha_F \approx \chi/2$ и $\beta_F \approx 1$. В этом случае решение (16) для длины волны λ_0 запишется в виде:

$$\theta_{F_0} = 2\pi \sqrt{\varepsilon_F \mu_F} \, \Delta_F / \lambda_0 \approx \pi \left(1 - \chi^2 / 4 \right). \tag{17}$$

При подстановке θ_{F0} в (6) и (8) получим соотношения:

$$\max_{E} \operatorname{Re}\left(Z_{F}(\lambda_{0})/\rho_{0}\right) << \left|\operatorname{Im}\left(\lambda_{0} d Z_{F}(\lambda_{0})/\rho_{0}/d\lambda\right)\right|,$$

$$\operatorname{Im} Z_{F}(\lambda_{0})/\rho_{0} = 0, \quad \operatorname{Re}\left(\lambda_{0} d Z_{F}(\lambda_{0})/\rho_{0}/d\lambda\right) \approx 0$$
(18)

Из (6), (8), а также из рисунков 4 — 7, следует, что увеличение σ_F и λ_0 приводит к уменьшению max Re Z_F (λ_0) в несколько раз и к существенному уменьшению производной max $|\lambda_0|$ $\partial \text{Im}Z_F$ (λ_0) $/\partial \lambda$ |. Увеличение параметра ϵ_F приводит к возрастанию их значений.

Рис. 3. Графики функций Re $Z_F(\lambda)$ (a) и Im $Z_F(\lambda)$ (б) для $\mu_F = 1$, $\varepsilon_F = 16$, $\Delta_F = 0.0017$, $\sigma_F = 10$.

Точки • соответствуют λ_0 , для которой $\lambda_0 \partial \operatorname{Im} Z_F(\lambda_0)/\partial \lambda > 0$, а кружки $\circ - \lambda_P$, для которой $\lambda_P \partial \operatorname{Im} Z_F(\lambda_P)/\partial \lambda < 0$. В этих точках $\operatorname{Im} Z_F(\lambda_P) = 0$ и $\operatorname{Im} Z_F(\lambda_0) = 0$.

Рис. 4. Графики зависимостей Re Z_F (λ) (a) и Im Z_F (λ) (б) для $\mu_F = 1$, $\epsilon_F = 16$ при $\sigma_F = 10$, $\Delta_F = 0.00125$ (1), $\sigma_F = 20$, $\Delta_F = 0.00127$ (2), $\sigma_F = 30$, $\Delta_F = 0.00131$ (3), $\sigma_F = 40$, $\Delta_F = 0.00136$ (4), $\sigma_F = 50$, $\Delta_F = 0.00144$ (5), ($\lambda_0 = 0.005$ м).

3. Результаты анализа свойств функции $|G(z,\lambda)|$

Анализ параметров функции $|G\ (\lambda)|$ проводился для $\sigma_{\it F} < 25,\ \epsilon_{\it F} > 2$ при выполнении условий, что $\lambda \partial {\rm Im} Z_{\it F}\ (\lambda)/\partial \lambda > 0,$ а для λ_0 выполняется $\theta_{\it W0} = 2\pi\ \Delta_{\it W}/\lambda_0 = \pi.$

Рис. 5. Графики зависимостей λ ·d Re Z_F (λ)/d λ (a) и λ ·dIm Z_F (λ)/d λ (б) для μ_F = 1, ϵ_F = 16 при σ_F = 10, Δ_F = 0.00125 (1), σ_F = 20, Δ_F = 0.00127 (2), σ_F = 30, Δ_F = 0.00131 (3), σ_F = 40, Δ_F = 0.00136 (4), (λ_0 = 0.005 м).

Рис. 6. Графики зависимостей Re Z_F (λ) (a) и Im Z_F (λ) (б) для μ_F = 1, ϵ_F = 16, σ_F = 10 при Δ_F = 0.0025, λ_0 = 0.01 м (f_0 = 30 ГГц) (1); Δ_F = 0.00165, λ_0 = 0.0067 м (f_0 = 45 ГГц) (2); Δ_F = 0.00125 , λ_0 = 0.005 м (f_0 = 60 ГГц) (3); Δ_F = 0.001, λ_0 = 0.004 м (f_0 = 75 ГГц) (4); Δ_F = 0.00084 , λ_0 = 0.0033 м (f_0 = 90 ГГц) (5).

Из (13) следует, что на резонансной длине волны λ_0 значения $|G(z, \lambda_0)|$ увеличиваются, когда $h(z, \lambda_0)$ достигает максимума, а функция $|q(\lambda_0)|$ стремится к минимальному значению. Согласно (14), функция $h(z, \lambda_0)$ стремится к $\max |h(z_0, \lambda_0)|$, когда $\partial h(z_0, \lambda_0)/\partial z = 0$.

Дифференцируя (14), получим выражения: $\tan (\theta_{wo} - \theta) = \rho_W/\max \operatorname{Re} Z_F(\lambda_0)$ и $\operatorname{Im} Z_F(\lambda_0).=0$. Величина $\operatorname{Re} Z_F(\lambda_0)/\rho_0$ ограничена, поэтому при $\rho_W/\rho_0 >> 1$ имеем

 $ho_W/{
m max}\ {
m Re}\ {
m Z_F}(\lambda_0)>>1.\ {
m B}$ этом случае получим θ_{wo} - $\theta\approx\pi/2$. Следовательно, ${
m max}|h\ (z_0,\,\lambda_0)|=2.$

Рис. 7. Графики зависимостей Re $Z_F(\lambda)$ (a) и Im $Z_F(\lambda)$ (б) для $\mu_F = 1$, $\sigma_F = 10$ при $\varepsilon_F = 16$, $\Delta_F = 0.00125$ (1), $\varepsilon_F = 12$, $\Delta_F = 0.00126$ (2), $\varepsilon_F = 9$, $\Delta_F = 0.00127$ (3), $\varepsilon_F = 6.25$, $\Delta_F = 0.00129$ (4), $\varepsilon_F = 4$, $\Delta_F = 0.00131$ (5).

Из (15) имеем:

$$\operatorname{Re} q(\theta_W) = \left(1 + \left(\rho_I/\rho_W\right) \operatorname{Re} Z_F(\lambda)/\rho_W\right) \sin \theta_W + \left(\operatorname{Im} Z_F(\lambda)/\rho_W\right) \cos \theta_W. \tag{19}$$

$$\operatorname{Im} q(\theta_{W}) = \left(\operatorname{Im} Z_{F}(\lambda)/\rho_{W}\right) \sin \theta_{W} - \left(\rho_{I}/\rho_{W} + \operatorname{Re} Z_{F}(\lambda)/\rho_{W}\right) \cos \theta_{W}. \tag{20}$$

Из (19) и (20) следует, что $|q(\lambda_0)|$ стремится к минимальному значению, когда для λ_0 выполняются условия: Im $Z_F(\lambda_0) = 0$, $\rho_W/\rho_I >> 1$, $\theta_{W0} = \pi$ и величина Re $Z_F(\lambda_0)/\rho_0$ ограничена.

В интервале длин волн $\delta\lambda=\lambda$ - λ_0 при $\delta\lambda/\lambda_0<<1$ можно полагать:

$$\operatorname{Im} Z_{F}(\lambda)/\rho_{W} \approx -\left|\operatorname{Im} \lambda_{0} d Z_{F}(\lambda_{0})/\rho_{0}/d\lambda\right| \cdot \delta \lambda / \lambda_{0},$$

$$\operatorname{Re} Z_{F}(\lambda)/\rho_{W} \approx \operatorname{Re} Z_{F}(\lambda_{0})/\rho_{W}, \quad \theta_{W} \approx \pi + \pi \cdot \delta \lambda / \lambda_{0}.$$
(21)

Используя соотношения (21) в (19) и (20), имеем:

$$\operatorname{Re} q(\lambda) \approx -\pi \left(1 + \left(\rho_{I}/\rho_{W}\right) \operatorname{Re}\left(Z_{F}(\lambda_{0})/\rho_{W}\right)\right) \left(\delta \lambda/\lambda_{0}\right) + \left|\operatorname{Im} \lambda_{0} d\left(Z_{F}(\lambda_{0})/\rho_{0}\right)/d\lambda\right| \cdot \left(\delta \lambda/\lambda_{0}\right)$$
(22)

$$\operatorname{Im} q(\theta_{w}) \approx \rho_{L}/\rho_{w} + \operatorname{Re} Z_{F}(\lambda_{0})/\rho_{w}. \tag{23}$$

При выполнении условий π (1+ ρ_I/ρ_W) Re ($Z_F(\lambda_0)/\rho_W$) (< , = , >)|Im (λ_0 d $Z_F(\lambda_0)/\rho_0$)/d λ |, из (23) следует, что |G (λ)| имеет два максимума, а между ними –

минимум (знак <), либо имеет плоскую вершину (знак =) (см. (22)). Если же знак >, то $|G(\lambda)|$ имеет один максимум (см. (22)). Увеличение ρ_W приводит к увеличению максимального значения $|G(\lambda)|$. Графики $|G(\lambda)|$ на рис. 8 и 9 ($\lambda_0 = 0.005$ м) и на рис. 10 и 11 ($\lambda_0 = 0.01$ м) подтверждают данные выводы.

Рисунки 8 и 10 демонстрируют трансформацию характеристик функции $|G(\lambda)|$ от формы с двумя максимумами к форме с одним максимумом с переходом через плоскую вершину при увеличении проводимости σ_F . слоя F.

На рис. 9 и 11 для характеристик с плоской вершиной наблюдается рост $\max |G(\lambda_0)|$ за счет увеличения ρ_W при согласованном уменьшении σ_F и выборе оптимальных величин Δ_W , но резонансная полоса $\Delta \lambda/\lambda_0$ уменьшается $(\Delta \lambda/\lambda_0)$ соответствует 0.707 $\max |G(\lambda_0)|$.

Рис. 8. Графики зависимости | G | от λ и θ_G/π от λ для $\lambda_0=0.005$ м, $\Delta_F\approx0.0027$, $\epsilon_F=16$, $\mu_F=1$, $\epsilon_W=1$, $\mu_W=25$, $\epsilon_I=16$, $\mu_I=1$ при $\sigma_F=11$, $\Delta_W=0.005$, $\Delta\lambda/\lambda=0.308$ (1), $\sigma_F=17.5$, $\Delta_W=0.005$, $\Delta\lambda/\lambda=0.246$ (2), $\sigma_F=21$, $\Delta_W=0.00505$, $\Delta\lambda/\lambda=0.16$ (3).

Рис. 9. Графики зависимости | G | от λ и θ_G/π от λ для $\lambda_0=0.005$ м, $\Delta_F=0.001255$, $\epsilon_F=16$, $\mu_F=1$, $\epsilon_W=1$, $\epsilon_I=16$, $\mu_I=1$ при $\sigma_F=20$, $\Delta_W=0.006$, $\mu_W=17.15$, (1), $\sigma_F=17.5$, $\Delta_W=0.00497$, $\mu_W=25$, (2), $\sigma_F=15$, $\Delta_W=0.00395$, $\mu_W=39.7$, (3), $\sigma_F=12.5$, $\Delta_W=0.0028$, $\mu_W=79.2$, (4), $\sigma_F=10$, $\Delta_W=0.0018$, $\mu_W=193$ (5).

Рис. 10. Графики зависимости | G | и θ_G/π от λ для $\lambda_0=0.01$ м, $\epsilon_{\it F}=16$, $\mu_{\it F}=1$, $\epsilon_{\it W}=1, \mu_{\it W}=25, \; \epsilon_{\it I}=16, \; \mu_{\it I}=1$ при $\sigma_{\it F}=5.5, \; \Delta_{\it F}=0.00252, \; \Delta_{\it W}=0.01, \; \Delta\lambda/\lambda\approx 0.31 \; (1), \; \sigma_{\it F}=8.7, \; \Delta_{\it F}=0.00253, \; \Delta_{\it W}=0.01, \; \Delta\lambda/\lambda\approx 0.26 \; (2), \; \sigma_{\it F}=21, \; \Delta_{\it F}=0.00254, \; \Delta_{\it W}=0.0025, \; \Delta\lambda/\lambda\approx 0.22 \; (3).$

Рис. 11. Графики зависимостей |G| и θ_G/π от λ для $\lambda_0=0.01$ м, $\epsilon_{\it F}=16$, $\mu_{\it F}=1$, $\epsilon_{\it W}=1$, $\epsilon_{\it U}=16$, $\mu_{\it I}=1$ при $\sigma_{\it F}=5.5$, $\Delta_{\it F}=0.0025$, $\Delta_{\it W}=0.0004$, $\mu_{\it W}=130$, (1), $\sigma_{\it F}=7.5$, $\Delta_{\it F}=0.0025$, $\Delta_{\it W}=0.00082$, $\mu_{\it W}=38$, (2), $\sigma_{\it F}=15$, $\Delta_{\it F}=0.0025$, $\Delta_{\it W}=0.00143$, $\mu_{\it W}=12.5$, (3), $\sigma_{\it F}=12.5$, $\Delta_{\it F}=0.0026$, $\Delta_{\it W}=0.0022$, $\mu_{\it W}=5.25$, (4).

Заключение

- 1) В миллиметровом диапазоне длин волн амплитудные и фазовые характеристики характеристического сопротивления Z_F (λ) системы из металлической пленки на поверхности слоя полупроводника имеют вид цепочки частотных интервалов с переходами от характеристик с положительной производной к характеристикам с отрицательной производной и наоборот.
- 2) Для фазовращателя с отрицательной фазочастотной характеристикой на резонансной длине волны λ_0 реальная часть и производная мнимой части $Z_F(\lambda)$ достигают максимума.
- 3) Применение фазовращателя в многослойном резонаторе Фабри-Перо позволяет расширить в 2-4 раза резонансную полосу длин волн $\Delta\lambda/\lambda_0$ и обеспечить увеличение усиления поля во внутреннем слое резонатора в 10-20 раз.
- 4) Увеличение проводимости полупроводникового слоя приводит к преобразованию амплитудно-частотной характеристики функции усиления поля $G(\lambda)$ от формы с двумя максимумами к форме с одним максимумом с переходом через плоскую вершину. При этом величина $\max |G(\lambda_0)|$ уменьшается, а $\Delta \lambda/\lambda_0$

увеличивается.

5) Для случая, когда амплитудно-частотная характеристика функции усиления поля $|G(\lambda)|$ имеет плоскую вершину, увеличение волнового сопротивления внутреннего слоя резонатора при соответствующем уменьшении проводимости полупроводника и оптимальных значениях длины внутреннего слоя резонатора приводит к увеличению max $|G(\lambda_0)|$, но при этом уменьшается значение ширины резонансной полосы $\Delta\lambda/\lambda_0$.

Финансирование: Работа выполнена в рамках государственного задания Института радиотехники и электроники им. В.А. Котельникова РАН.

Литература

- 1. Кулешов В. Н., Удалов Н. Н., Богучаев В. М. и др. Генерирование колебаний и формирование радиосигналов. М.: МЭИ, 2008. 416 с.
- 2. Клемпитт Л. Мощные электровакуумные приборы СВЧ. Пер. с англ. / Л. Клемпитт. М.: Мир, 1974. 134 с.
- 3. А. В. Ляшенко, В. П. Ерёмен, А. И. Тореев. Усилительные приборы типа О миллиметрового диапазона. // Прикладная физика, № 5, 2009, с. 119 132.
- 4. Канавец В. И. Нелинейные процессы в мощных многорезонаторных клистронах и оптимизация их параметров (в сборнике. III зимней школысеминара инженеров. Кн. 7) / В. И. Канавец, В. М. Лопухин, А. Н. Сандалов. Саратов: изд. Саратовского ун-та, 1974. С. 243 245.
- 5. Канавец В. И. О получении высоких КПД в мощных широкополосных клистронах (в сборнике VI Всесоюзного семинара «Колебательные явления в потоках заряженных частиц»). / В. И. Канавец, А. Н. Сандалов, А. И. Слепков. Л.: изд-во СЗПИ, 1978. С. 6 9.

- 6. Востров М. С., Швец С. В. Широкополосные многолучевые клистроны 2сантиметрового диапазона на двухзазорных резонаторах. // Электроника и вакуумная техника: приборы и устройства, технология, материалы: Материалы научно-технической конференции молодых специалистов. — Саратов: изд-во Саратовского ун-та, 2004. — 208 с.
- 7. Каталог фирмы "Varian" Extended Interaction Klystron Selection Guide, 1986.
- 8. CPI Canada and the millimeter wave klystron (information site). Website: http://www.cpii.com/cmp
- 9. Брунов Б. Я., Теория электромагнитного поля / Б. Я. Брунов, Л. М. Гольденберг, И. Г. Кляцкин, Л. А. Цейтлин. М.-Л.: Госэнергоиздат, 1962. 512 с.
- 10. Дьяконов В. П. Математика 5.(5.1/5.2) / 6.0.7.0. Полное руководство / В. П. Дьяконов М.: ДМК Пресс, 2010, 624 с.

Для цитирования:

Захарченко М.Ю., Захарченко Ю.Ф. Изучение принципов построения широкополосной колебательной СВЧ системы на примере резонатора Фабри-Перо. // Журнал радиоэлектроники. -2023. -№. 11. https://doi.org/10.30898/1684-1719.2023.11.29