Journal of Radio Electronics. eISSN 1684-1719. 2024. №11
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2024.11.1
Statistical synthesis and analysis
of comprehensive parameters estimation algorithms
V.I. Parfenov , A.A. Kalininskii
Voronezh State University,
394018, Russia, Voronezh, Universitetskaya pl., 1
The paper was received June 16, 2024.
Abstract. In this article comprehensive decision-making algorithms regarding estimates of radiation parameter from research object, based on information received at the central node from spatially distributed sensors of a wireless sensor network, is developed. During the statistical synthesis of algorithms, it was assumed that the shape of the signal from the research object is known and it arrives to sensors combined with white Gaussian noise. The article shows that the structure of comprehensive unknown parameter estimation algorithms significantly depends on the characteristics of the estimates made regarding this parameter in each individual sensor. Two approaches to algorithm synthesis were used. One of them is based on the problem of comparing statistical hypotheses. The second one is based on researching for the position of the absolute maximum of the decision statistics. For both algorithms, using computer modeling, we obtained the dependences of the dispersion of comprehensive parameter estimation on the signal-to-noise ratio, the number of bits allocated to represent the estimate and number of sensors. Optimal and quasi-optimal algorithms, synthesized both for “normal” estimates and for estimates with anomalous errors is studied. Conditions that ensure increased accuracy of comprehensive estimates using synthesized algorithms is identified. Recommendations on the possible application of the results and further directions for the development of research are formulated.
Key words: wireless sensor network; comprehensive estimation of parameters; quantization; likelihood function.
Corresponding author: Parfenov Vladimir Ivanovich, vip@phys.vsu.ru
References
1. Polavarapu S. C., Panda S. K. A Survey on Industrial Applications using MEMS and WSN // 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analystics and Cloud)(I-SMAC). – IEEE, 2020. – C. 982-986. DOI: 10.1109/I-SMAC49090.2020.9243514.
2. Singh P. K., Kaur J. A Review of Routing Techniques for Different Applications in Wireless Sensor Network // 2020 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS). – IEEE, 2022. – C. 174-179.
3. Jamshed M. A. et al. Challenges, applications, and future of wireless sensors in Internet of Things: A review // IEEE Sensors Journal. – 2022. – T. 22. – №. 6. – C. 5482-5494. DOI: 10.1109/JSEN.2022.3148128.
4. Williams A. J. et al. Survey of energy harvesting technologies for wireless sensor networks // IEE Access. – 2021. – T. 9. – C. 77493-77510. DOI: 10.1109/ACCESS.2021.3083697.
6. IEEE Std 802.15.4TM-2011: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs). – IEEE Computer Society: New York, NY, USA, 2011.
7. Savazzi1 S., Goratti L., Spagnolin U., Latva-aho M. Short-range wireless sensor networks for high density seismic monitoring // Proceedings of the Wireless World Research Forum. – 2009.
8. Куликов Е. И., Трифонов А. П. Оценка параметров сигналов на фоне помех. [Kulikov E. I., Trifonov A. P. Estimation of signal parameters against a background of interference.] – Советское радио, 1978
9. Niu R. et al. Designing local quantizers for distributed detection of a source with unknown location // IEEE Communications Letters. – 2023. – Т. 27. – № 11. – С. 3113-3117. DOI: 10.1109/LCOMM.2023.3318203.
10. Zhy W., Zhy H. Joint detection and parameter estimation under unknown prior probability // Proceedings of the 40-th Chinese Control Conference. – 2021. – С. 3036-3041. DOI: 10.23919/CCC52363.2021.9549888.
11. Парфенов В. И., Калининский А. А. Сравнительный анализ комплексных алгоритмов оценивания параметров [Parfenov V. I., Kalininskii A. A. Comprehensive estimation of signal parameters without noise in the communication channel] // Радиолокация, навигация, связь. – 2024. – Т. 1. – С. 276-285.
12. Трифонов А. П., Шинаков Ю. С. Совместное различение сигналов и оценка их параметров на фоне помех. [Trifonov A. P., Shinakov YU. S. Complex signal discrimination and assessing their parameters in the presence of interference.] – Радио и связь, 1986.
13. Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. [Gradshtein I. S., Ryzhik I. M. Table of Integrals, Series, and Products.] – Наука, 1971.
14. Парфенов В. И., Ле В. Д. Анализ влияния окружающей среды на эффективность алгоритма обработки информации в беспроводных сенсорных сетях [Parfenov V. I., Le V. D. Analysis of the environment influence on the efficiency of the information processing algorithm in wireless sensor networks] // Физика волновых процессов и радиотехнические системы. – 2020. – Т. 23. – №. 2. – С. 49-54. DOI: 10.18469/1810-3189.2020.23.2.48-54.
15. Parfenov V. I., Le V. D. Optimal fusion rule for distributed detection with channel errors taking into account sensors’ unreliability probability when protecting coastlines // Int. J. Sens. Networks. – 2022. – T. 38 – №2. – C. 71-84. DOI: 10.1504/IJSNET.2022.121157.
For citation:
Parfenov V.I., Kalininskii A.A. Statistical synthesis and analysis of comprehensive parameters estimation algorithms in wireless sensor networks. // Journal of Radio Electronics. – 2024. – №. 11. https://doi.org/10.30898/1684-1719.2024.11.1 (In Russian)