Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹11

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.11.13

 

 

 

THE CALCULATION ALGORITHM

OF SUBLATTICE MAGNETIZATIONS

IN TWO-SUBLATTICE FERRIMAGNET

WITH COMPENSATION POINT.

APPROXIMATION BY THE BRILLOUIN FUNCTION

 

Suslov D.A., Shavrov V.G., Shcheglov V.I.

 

Institute of Radio Engineering and Electronics RAS

125009, Moscow, st. Mokhovaya, 11-7, Russia

 

The paper was received November 19, 2014.

 

Abstract. An algorithm for determining the magnetization of sub-lattices of a two-lattice ferrimagnet with a compensation point is proposed. To express the analytical dependence of magnetization on temperature, an approximation by the Brillouin function is explicitly used. A scheme for determining the magnetization of sub-lattices based on the use of temperature values of four characteristic points of the lower branch of the phase diagram is presented. A system of equations is obtained that relates the parameters of characteristic points with the values of magnetization at the initial point and at the maximum point of the diagram at a temperature above compensation. By solving the above system of equations, fairly simple analytical expressions are obtained that determine the saturation magnetization values of both sub-lattices through the parameters of characteristic points of the lower branch of the phase diagram. The proposed technique is applied to the determination of the magnetization of sub-lattices in experiments to measure the total magnetization performed on films of two different compositions using a vibrating magnetometer. To verify the obtained values, a comparison was performed with the data obtained in the experiment, which showed a good coincidence of the calculated data with the experimental ones.

Key words: mixed garnet ferrite, compensation temperature, sub-lattice magnetization.

Financing: The work was carried out within the framework of the state assignment of the V.A. Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences.

Corresponding author: Suslov Dmity Alexeevich, sda_53@mail.ru

 

References

1. Suslov D.A., Shavrov V.G., Shcheglov V.I. Algorithm for determining the magnetization of sublattices of a two-lattice ferrimagnet with a compensation point. Part 1. The phase diagram. // Journal of Radio Electronics. – 2024. – ¹. 5. https://doi.org/10.30898/1684-1719.2024.5.2

2. Suslov D.A., Shavrov V.G., Shcheglov V.I. Algorithm for determining the magnetization of sublattices of a two-lattice ferrimagnet with a compensation point. Part 2. Power approximation. // Journal of Radio Electronics. – 2024. – ¹. 5. https://doi.org/10.30898/1684-1719.2024.5.3

3. Vetoshko P.M., Berzhansky V.N., Polulyakh S.N., Suslov D.A., Mashirov A.V., Shavrov V.G., Pavlyuk E.I. Magneto-optical visualization of magnetic phases in an epitaxial ferrite-garnet film near the compensation point. // RE. 2023. Vol.68. No.4. pp.391-395. DOI: 10.31857/S0033849423040149

4. Suslov D.A., Vetoshko P.M., Mashirov A.V., Taskaev S.V., Polulyakh S.N., Berzhansky V.N., Shavrov V.G. Non-collinear phase in rare-earth iron garnet films near compensation temperature. // Crystals. 2023. V.13. ¹9. P.1297(11). DOI:10.3390/cryst13091297

5. Gurevich A.G. Ferrites at ultrahigh frequencies. M.: State Publishing House of Physics and Mathematics lit. 1960.

6. Gurevich A.G. Magnetic resonance in ferrites and antiferromagnets. M.: Nauka. 1973.

7. Gurevich A.G., Melkov G.A. Magnetic vibrations and waves. M.: Fizmatlit. 1994.

8. Shavrov V.G., Shcheglov V.I. Magnetostatic waves in inhomogeneous fields. M.: Fizmatlit. 2016.

9. Shavrov V.G., Shcheglov V.I. Magnetostatic and electromagnetic waves in complex structures. M.: Fizmatlit. 2017.

10. Lisovsky F.V. Physics of cylindrical magnetic domains. M.: Sov.Radio. 1979.

11. O'Dell T. Ferromagnetodynamics. Dynamics of CMD, domains and domain walls. M.: Mir. 1983.

12. Malozemov A., Slonzuski J. Domain walls in materials with cylindrical magnetic domains. Moscow: Mir. 1982.

13. Magnetoresistive RAM. URL: Magnetoresistive RAM – Wikipedia.

14. Romanova I. Magnetoresistive MRAM memory of Everspin Technologies company. // Electronics NTB. 2014. No.8.

15. Logunov M., Safonov S., Fedorov A., Danilova A., Moiseev N., Safin A., Nikitov S., Kirilyuk A. Domain wall motion across magnetic and spin compensation points in magnetic garnets. // Phys. Rev. Appl. 2021. V.15. P.064024.

16. Gerasimov M.V., Logunov M.V., Nikitov S.A., Nozdrin Yu.N., Spirin A.V., Tokman I.D. Experimental observation of domain wall motion induced by laser pump-pulse. // Book of Abstracts of Moscow International Symposium on Magnetism (MISM). Moscow. 2017. Published by “Publishing House of the Physics Faculty of Moscow State University». Moscow. P.36.

17. Kirilyuk A., Kimel A.V., Rasing T. Ultrafast optical manipulation of magnetic order. // Rev. Mod. Phys. 2010. V.82. ¹3. P.2731.

18. Bigot J.V., Vomir M. Ultrafast magnetization dynamics of nanostructures. // Ann. Phys. (Berlin). 2013. V.525. ¹1-2. P.2.

19. Jäger J.V., Scherbakov A.V., Linnik T.I., Yakovlev D.R., Wang M., Wadley P., Holy V., Cavill S.A., Akimov A.V., Rushforth A.W., Bayer M. Picosecond inverse magnetostriction in garfenol thin films. // Appl. Phys. Lett. 2013. V.103. ¹3. P.032409(5).

20. Walowski J., Münzenberg M. Perspective: Ultrafast magnetism and THz spintronics. // J. Appl. Phys.2016. V.120. No.14. P.140901(16).

21. Vlasov V.S., Golov A.V., Kotov L.N., Shcheglov V.I., Lomonosov A.M., Temnov V.V. Modern problems of ultrafast magnetoacoustics. // ALREADY (Acoustic Magazine). 2022. Vol.68. No. 1. pp.22-56.

22. Belov K.P., Zaitseva M.A. Rare earth magnetic materials. // UFN. 1972. Vol.106. No.2. pp.365-369.

23. Belov K.P., Zvezdin A.K., Kadomtseva A.M., Levitin R.Z. Transitions of spin reorientation in rare earth magnets. // UFN. 1976. Vol.119. No.3. pp.447-486.

24. Belov K.P., Zvezdin A.K., Kadomtseva A.M., Levitin R.Z. Orientation transitions in rare-earth magnets. M.: Nauka. 1979.

25. Zvezdin A.K. Field induced phase transitions in ferromagnets. //Handbook of Magnetic Materials. V.9. Elsevier Science. 1995.

26. Davydova M.D., Zvezdin K.A., Kimel A.V., Zvezdin A.K. Ultrafast spin dynamics in ferromagnets with compensation point. // J. Phys. Cond. Matt. 2020. V.32. ¹1. Article No. 01LT01. DOI: 10.1088/1361-648X/ab42fa.

27. Geprags S., Kehlberger A., Coletta F.D. et al. Origin of the spin Seebeck effects in compensated ferromagnets. // Nat. Commun. 2016. V.7. Article No. 10452. DOI: 10.1038/ncomms10452.

28. Gonzales J.A., Andres J.P., Anton R.L. Applied trends in magnetic rare earth / transition metal alloys and multilayers. // Sensors. 2021. V.21. ¹16. P.5615. DOI: 10.3390/s21165615.

29. Medapalli R., Razdolski I., Savoini M et al. The role of magnetization compensation point for efficient ultrafast control of magnetization in Gd24Fe66.5Co9.5 alloy. // Europ. Phys. J. B. 2013. V.86. No.4. Article No. 183. DOI: 10.1140/epjb/e2013-30682-6.

30. Belov K.P. Ferrimagnets with a «weak» magnetic sublattice. // UFN. 1996. Vol.166. No.6. pp.660-681.

31. Clark A.E., Callen E. Neel ferromagnets in large magnetic fields. // J. Appl. Phys. 1968. V.39. No.13. P.5972-5082.

32. Lux B., Button K. Ultrahigh frequency ferrites and ferrimagnets. Moscow: Mir. 1965.

33. Vonsovsky S.V., Shur Ya.S. Ferromagnetism. M.: OGIZ Gostekhizdat. 1948.

For citation:

Suslov D.A., Shavrov V.G., Shcheglov V.I. The calculation algorithm of sublattice magnetizations in two-sublattice ferrimagnet with compensation point. Approximation by the Brillouin function // Journal of Radio Electronics. – 2024. ¹. 11. https://doi.org/10.30898/1684-1719.2024.11.13 (In Russian)