

DOI: https://doi.org/10.30898/1684-1719.2024.11.17 УДК: 621.372.2

ОЦЕНКА ВЛИЯНИЯ ПРОИЗВОДСТВЕННЫХ ДЕФЕКТОВ НА ХАРАКТЕРИСТИКИ СВЯЗАННОЙ МИКРОПОЛОСКОВОЙ ЛИНИИ

Н.О. Кузьмин, М.С. Мурманский, Е.С. Жечев

Томский государственный университет систем управления и радиоэлектроники 634050, г. Томск, пр. Ленина, 40.

Статья поступила в редакцию 8 августа 2024 г.

Аннотация. Проведена оценка влияния производственных дефектов на связанной микрополосковой Результаты характеристики линии. квазистатического анализа показали, что при изменении времени травления и значений є_г изменяются значения матриц С и L, что в свою очередь оказывает частотные и временные характеристики линий передачи. влияние на Из результатов электродинамического анализа выявлено, что в зависимости от формы проводников изменяется линейность коэффициента передачи. Показано, что при изменении формы проводников связанных линий передачи с увеличением времени травления, резонансы сдвигаются в сторону больших частот. Анализ полученных матриц С и L, выявил, что с увеличением времени травления, собственные значения С и Z уменьшаются, а L – увеличиваются. Это связано с уменьшением площади поперечного сечения проводника, а также изменением значений є, материалов. Выявлено, что увеличение времени травления приводит к изменению формы напряжения на дальнем конце активного проводника. Также получено, что 3 форма проводников обладает наилучшими характеристиками с точки зрения помехоподавления. Структура с прямоугольной формой проводников обладает наименьшими значениями погонной емкости. Это оказывает влияние на характеристики связанной МПЛ.

Ключевые слова: квазистатическое моделирование, относительная диэлектрическая проницаемость, травление, электродинамическое моделирование.

Финансирование: Исследование выполнено в рамках проекта FEWM-2024-0005 Минобрнауки России.

Автор для переписки: Кузьмин Никита Олегович kuzjmin.nikita23@gmail.com

Введение

Ввиду постоянного и стремительного развития радиоэлектронных систем (РЭС), их стабильная работа все больше зависит от выполнений требований электромагнитной совместимости [1, 2]. В состав РЭС входят множество электрических цепей, узлов и межсоединений. Основной сборочной единицей является печатная плата (ПП), широко применяемая из-за возможности гибкого конструирования, а также низкой стоимости. Помимо модернизации отдельных блоков и узлов РЭС, входящих в её состав, необходимо находить оптимальные методы их производства. В условиях повышенной плотности монтажа, требований помехозащищенности, эффективность к надежности И изготовленных систем и компонентов напрямую зависит от прогресса радиоконструирования [3-5]. Так, при производстве ПП необходимо учитывать дефекты, возникающие в процессе производства, поскольку их не учёт может привести к негативным последствиям работы РЭС, вплоть до оказания негативного влияния на окружающую среду и людей. Одним из основных производственных дефектов при изготовлении ПП является несоответствие размеров, расположения и проводимости проводящих дорожек. Неправильное расположение и размеры дорожек могут привести к короткому замыканию или разрыву цепи, что негативно скажется на работоспособности устройства. Также важно учитывать дефекты, связанные с качеством материалов, от которых зависят электрические характеристики ПП [6].

Игнорирование производственных дефектов при изготовлении ПП может привести к серьезным последствиям, таким как недостоверная передача данных, перегрев устройства, выход из строя целых узлов и т.д. [7].

Работы по тематике оценки влияния травления проводников на временные характеристики микрополосковых линий передачи уже публиковались [8, 9], однако там лишь проводилась оценка влияния травления проводников прямоугольной формы и формы проводников в виде правильной трапеции. В первой изменяется параметр подтравливания и, соответственно, геометрия проводника, а во второй проводится сравнение результатов моделирования по предложенной прогрессии, также a экспериментальных результатов. Дополнительно к этому, зная, что при производстве ПП заготовки проходят целый комплекс поэтапного изготовления, необходимо учитывать ряд факторов (например, электрофизические параметры подложки ПП), влияющих на качество изготовленного прототипа, и как следствие на устройство, в состав которого оно входит.

Научной новизной является, выявление зависимостей, временных и пассивных устройств, частотных характеристик, основанных на воздействии микрополосковых линиях при нескольких основных производственных факторов. Практической значимостью является учет изменения временных и частотных характеристик пассивных устройств на основе микрополосковых линий.

Таким образом, целью данной работы является оценка влияния травления проводников и изменения диэлектрической проницаемости подложки ПП на временные и частотные характеристики связанной микрополосковой линии.

1. Материалы, подходы и методы

Если материал композитный, например армированный слоистый диэлектрик, значение относительной диэлектрической проницаемости (ε_r) может значительно изменяться в зависимости от долевого содержания каждой компоненты [10]. Однако при производстве ПП с подложкой из материала FR-4 изменение ε_r наиболее вероятно из-за самой технологии изготовления. Неверная

ориентация стекловых волокон вносит влияние в значение диэлектрической проницаемости [11], однако согласно стандарту [12], достигнутое значение $\varepsilon_r = 4.5$. Если проводить сравнение с AD1000 (ламинат, армированный стекловолокном, то у FR-4 наблюдается низкая частотная стабильность ε_r [12, 13]. Выбор данных материалов основывается, на том, что данные материалы повсеместно используются при проектировании РЭА [14, 15]. На рисунке 1 представлена частотная зависимость отклонения ε_r материала AD1000 и FR-4.

Рис. 1. Частотная зависимость ε_r материалов AD1000 и FR-4.

Существует ряд методов изготовления ПП, наиболее распространенным из которых является субтрактивный метод [16, 17]. Упрощенная технология изготовления ПП включает в себя несколько следующих этапов: заготовка ПП покрывается селективной защитой на участках, где необходимо сохранить проводящий рисунок; подготовленная заготовка погружается в травильный раствор и находится в нем до тех пор, пока не стравятся излишки проводящего слоя, незащищенные селективной защитой. Таким образом, при травлении происходит стравливание меди, это неравномерный процесс, при котором проводники могут приобретать различные формы [18, 19], наиболее встречающиеся из которых представлены на рисунке 2.

Рис. 2. Поперечные сечения трапециевидной (*a*), овальной (*б*) и Т-образной (*в*) форм проводников.

Форма проводника зависит от нескольких основных факторов: толщина меди, циркуляция травильного раствора, время травления [20]. В данной работе рассматривается влияние времени травления на характеристики линии передачи на примере связанной микрополосковой линии (МПЛ). Данная линия выбрана в следствии простоты реализации и частоты использования таких линий передачи. Поперечное сечение рассматриваемых структур, и её эквивалентная схема включения представлены на рисунке 3.

Рис. 3. Поперечное сечение связанной МПЛ (*a*) и ее эквивалентная схема включения (б).

Выполнен анализ характеристик связанной МПЛ, при этом первый проводник являлся сигнальным, второй – нагруженным на резисторы с обоих концов. Параметры поперечного сечения связанной МПЛ: ширина проводника w = 0.03 мм, высота проводника t = 0.005 мм, расстояние между проводниками s = 0.33 мм, высота диэлектрической подложки h = 0.1 мм, длина линии l = 5 см. Рассмотрены структуры с диэлектрическими подложками из керамики AD1000 и стеклотекстолита FR-4, со значениями $\varepsilon_{rAD1000} = 10.2$ и $\varepsilon_{rFR-4} = 4.5$. Номинал резисторов в эквивалентной схеме включения составил 50 Ом. Оценка временных откликов выполнена на примере трапецеидального импульса с параметрами: время нарастания, длительности и спада фронта по 50 пс, общей

длительностью воздействия – 150 пс. Такое воздействие выбрано, потому что его спектр лежит в исследуемом частотном диапазоне.

Рассмотрены три случая: два промежуточных времени травления и эталонный случай, у которого проводники имеют прямоугольную форму (дальше обозначается, как 1). При травлении рассмотрены структуры с проводниками трапециевидной формы, у которых нижнее основание, находящееся на диэлектрической подложке, больше верхнего основания (далее обозначается, как 2) и обратный этому случай (далее обозначается, как 3). Все исследуемые структуры представлены на рисунке 4.

Рис. 4. Поперечные сечения связанных МПЛ с формами проводников 1 (*a*), 2 (б), 3 (в) и их эквивалентная схема включения (г).

Предполагалось, что каждому случаю соответствуют индивидуальные значения геометрических параметров с постоянным значением ε_r диэлектрических подложек 4.5 и 10.2 для FR-4 и AD1000 соответственно. Далее для частного случая при времени травления t = 110 с, изменялись значения ε_r диэлектриков FR-4 и AD1000. Брались значения ε_r , равные 3.6, 5.4 и 9.85, 10.55 (в соответствии с их техническими документациями) для FR-4 и AD1000 соответственно. Прогрессия травления и значения погрешности ε_r диэлектриков, используемых в работе, представлены в таблицах 1, 2.

Таблица 1. Геометрические значения проводников при различном времени травления для рассматриваемых структур.

	Форма проводника и их геометрические параметры						
Время травления <i>t</i> , с	1	2		3			
	<i>w</i> , мкм	<i>w</i> ₁ , мкм	<i>W</i> ₂ , MKM	<i>w</i> ₁ , мкм	<i>W</i> ₁ , MKM		
110	30	40	30	40	30		
140	30	30	15	30	15		

	Материал и их ε _r			
время травления <i>i</i> , с	FR-4	AD1000		
110	3.6	9.85		
140	5.4	10.55		
Эталон	4.5	10.2		

Таблица 2. Значения ε_r при различном времени травления для рассматриваемых структур.

2. Результаты квазистатического моделирования

В данном разделе приведены результаты исследования связанной МПЛ во временной области. Моделирование проведено в системе квазистатического анализа TALGAT [21]. Она позволяет получить точные рассчитанные значения матриц электростатической коэффициентов **(C)** электромагнитной И индукции (L) c минимальными ресурсными затратами, поскольку предполагается, что в исследуемой структуре распространяется только квазипоперечная Т-волна. Проведено моделирование каждой структуры при различном времени травления t с эталонными значениями ε_r . Подавалось воздействие в форме трапециевидного импульса с амплитудой ЭДС 1 В. Сегментация задавалась согласно t/5. Получены временные отклики на помеховый импульс И погонные значения коэффициентов матриц L, C, Z (таблицах 3, 4), где собственные значения матриц выделены жирным шрифтом.

Таблица 3. Значения коэффициентов матриц L, C, Z для рассматриваемых структур с диэлектриком FR-4 при различных *t*.

Структура	<i>t</i> , c	С, п	ιФ/м	\mathbf{L} , мкГн/м		Z , C) _{M/M}
2	110	69.298	-28.456	0.564	0.267	98.860	43.765
	110	-28.456	69.298	0.267	0.564	43.765	98.860
2	140	58.844	-20.806	0.627	0.259	110.321	42.326
Δ		-20.806	58.844	0.259	0.627	42.326	110.321
2	110	83.869	-26.668	0.565	0.269	88.641	34.268
3	110	-40.477	89.867	0.269	0.565	41.024	85.706
2	1.40	79.624	-20.584	0.630	0.262	93.438	31.067
3	140	-30.720	83.090	0.262	0.630	36.700	91.511
1		59.298	-22.558	0.602	0.262	108.915	44.478
	-	-22.558	59.298	0.262	0.602	44.478	108.915

Таблица 4. Значения коэффициентов матриц L, C, Z для рассматриваемых структур с диэлектриком AD1000 при различных *t*.

Структура	<i>t</i> , c	С , пФ/м		L, MF	сГн/м	Z , Ом/м	
2	110	140.330	-55.338	0.564	0.267	68.905	29.963
Δ	110	-55.338	140.330	0.267	0.564	29.963	68.905
2	140	119.519	-40.488	0.627	0.259	76.936	28.963
Δ	140	-40.488	119.519	0.259	0.627	28.963	76.936
2	110	188.512	-50.603	0.565	0.269	58.303	21.134
5	110	-91.128	204.609	0.269	0.565	26.840	56.036
2	140	193.230	-40.958	0.630	0.262	59.252	18.400
3	140	-71.377	202.440	0.262	0.630	22.780	57.926
1	1	117.868	-43.265	0.602	0.262	76.787	30.860
		-43.265	117.868	0.262	0.602	30.860	76.787

Из таблиц 3 и 4 видно, что с увеличением времени травления значения коэффициентов матриц C и Z уменьшаются, а L – увеличиваются. Изменение рассматриваемых параметров связано с изменением формы проводника. Площадь поперечного сечения проводника уменьшается, что приводит к результату, описанному выше. Видно, что у структуры с диэлектрическим заполнением из FR-4 наблюдается большее изменение рассматриваемых параметров между структурами с трапециевидными и прямоугольными проводниками. Так, для структуры из материала FR-4 значение C₁₁ увеличилось в 1.17 раза (между случаем t = 110 с при формах проводников 1 и 2). Значения L₁₁ и Z₁₁ уменьшились в 1.07 и 1.1, соответственно. Для дополнительного анализа напряжений [22]. формы использовались *N*-нормы Вычисления *N*-нормы основаны на применении математических операторов ко всей форме сигнала. Краткое описание *N*-норм представлено в таблице 5. Также в ходе моделирования получены зависимости выходных напряжений для рассматриваемых структур, представленные на рисунке 5.

N⁰	Формула	Наименование	Обозначение
N_1	$\left U(t) \right _{\max}$	Пиковое (абсолютное) значение	Сбой схемы / электрический пробой / дуговые эффекты
N_2	$\left \frac{\delta U(t)}{\delta t} \right $	Пиковая (абсолютная) производная	Искрение компонента / сбой схемы
<i>N</i> ₃	$\left \int_{0}^{t} U(t)\right _{\max}$	Пиковый (абсолютный) импульс	Диэлектрический пробой (если <i>R</i> обозначает поле <i>E</i>)
N_4	$\int_{0}^{\infty} U(t) dt$	Выпрямленный общий импульс	Повреждение оборудования
N_5	$\left\{\int_{0}^{\infty} \left U(t)\right ^{2} dt\right\}^{1/2}$	Квадратный корень интеграла действия	Выгорание компонента

Таблица 5. Краткое описание *N*-норм.

Рис. 5. Зависимости выходных напряжений для структур связанной МПЛ с диэлектриками из FR-4 (*a*) и AD1000 (б) с проводниками формы 2 при *t* = 110 с (—); 2 при *t* = 140 с (– ·); 3 при *t* = 110 с (···); 3 при *t* = 140 с (- ·) и формы 1 (—) (квазистатический анализ).

Из рисунка 5 видно, что форма проводников 1 характеризуется минимальным временем задержки *T*, которое составило 0.263 и 0.431 нс, соответственно. Также следует, что 3 форма проводников характеризуется максимальным значением *T*, которое соответствует 0.318 и 0.495 нс для FR-4 и

AD1000, соответственно. Выявлено, что форма 2 характеризуется средними значениями Т, которые составили 0.263 и 0.44 нс. Значение Т структуры с формы 2 находится между значениями проводниками Т структур С проводниками форм 1 и 3. Также в структурах с материалом AD1000 значение напряжения изменяется незначительно. Однако с материалом FR-4 видно изменение напряжения у структуры с проводниками формы 3. Наибольшая разница амплитуд напряжений на выходе активной линии наблюдается между сигналами структур с проводниками формы 1 и 3 (разница составила 0.044 В). Также видно, что длительности сигналов отличаются. В случае структур с материалом AD1000, сигнал имеет треугольную форму, что связано с потерями, которые больше в таких структурах. Отличие Т между структурами с проводниками трапециевидных форм является наибольшим и составляет 0.11 и 0.12 нс, соответственно. В таблице 6 представлены вычисленные *N*-нормы для рассматриваемых структур с диэлектриком FR-4 при различном t.

Таблица 6. Значения вычисленных *N*-норм для рассматриваемых структур с диэлектриком FR-4 при различных *t*.

Структура	<i>t</i> , c	N_1	$N_2 \cdot 10^{-9}$	$N_3 \cdot 10^{11}$	$N_4 \cdot 10^{11}$	$N_5 \cdot 10^6$
2	110	0.442	9.248	5	5.013	3.952
2	140	0.431	9.014	5	5.01	3.877
3	110	0.397	5.786	5	5	3.569
3	140	0.398	5.485	5	5	3.565
1	-	0.432	9.026	4.999	5.029	3.897

Видно, что изменение формы проводника и времени травления влияет на значения всех *N*-норм. Минимальное значение N_1 наблюдается при 3 форме проводника и времени травления 110 с. Так же видно, что 3 форма проводника позволяет уменьшить значение N_2 по сравнению с 1 и 2 формой в 1.557 раз. Дополнительно к этому изменение формы и времени травление практически не оказывает влияние на значение N_3 и N_4 . Минимальное значение N_5 составило 3.565·10⁶. В таблице 7 представлены вычисленные *N*-нормы для рассматриваемых структур с диэлектриком AD1000 при различном *t*.

Структура	<i>t</i> , c	N_1	$N_2 \cdot 10^{-9}$	$N_3 \cdot 10^{11}$	$N_4 \cdot 10^{11}$	$N_5 \cdot 10^6$
2	110	0.386	7.864	5	5.245	3.522
2	140	0.468	9.339	5	5	4.035
3	110	0.285	6.319	5	5.075	3.172
3	140	0.272	5.47	5	5.025	3.181
1	-	0.466	9.301	5	5.001	4.058

Таблица 7. Значения вычисленных *N*-норм для рассматриваемых структур с диэлектриком AD1000 при различных *t*.

Видно, что минимальные значения N_1 и N_2 наблюдаются для структуры с 3 формой проводников и временем травления 140 с. Форма проводников и изменение времени травления не оказывают никакого влияния на значения N_3 . Максимальное значение N_4 наблюдается при 2 форме проводников и времени травления 110 с. Максимальное значение N_5 наблюдается для эталонного случая и составляет 4.058·10⁶.

На рисунке 6 представлены частотные зависимости |S21| для связанной МПЛ с диэлектриками из FR-4 и AD1000.

Рис. 6. Частотные зависимости модуля коэффициента передачи с диэлектриками из FR-4 (*a*) и AD1000 (*б*) с проводниками формы 2 при *t* = 110 с (—); 2 при *t* = 140 с (– ·); 3 при *t* = 110 с (···); 3 при *t* = 140 с (- ·) и формы 1 (—) (квазистатический анализ).

Из рисунка. 6*а* видно, что формы проводников 3 с различным временем травления обладают наибольшим ослаблением, которое достигает -18 дБ. Такое ослабление вызвано формой проводников. Из рисунка 6*б* видно, что минимальное ослабление составляет -18 дБ. Таким образом можно сделать вывод, что форма проводников с различным временем травления оказывает значительно влияние на частотные характеристики связанной МПЛ.

После рассматривались структуры с геометрическими значениями, соответствующими t = 110 с. Проведено моделирование каждой структуры при различных ε_r при t = 110 с. Получены временные отклики на помеховый импульс и погонные значения коэффициентов матриц L, C, Z (таблица 8, 9), где собственные значения матриц выделены жирным шрифтом.

Таблица 8. Значения коэффициентов матриц L, C, Z для рассматриваемых структур при t = 110 с при различных ε_r (FR-4).

Структура	Структура; ε_r	С, п	С, пФ/м		\mathbf{L} , мк Γ н/м		Z , Ом/м	
2	26	58.437	-23.744	0.564	0.267	107.418	47.330	
Δ	5.0	-23.744	58.437	0.267	0.564	47.330	107.418	
2	5 /	81.182	-31.882	0.564	0.267	90.521	39.292	
Δ	5.4	-31.882	81.182	0.267	0.564	39.292	90.521	
2	26	68.006	-22.900	0.565	0.269	98.975	39.211	
3	5.0	-32.753	72.416	0.269	0.565	45.897	95.982	
2	5 /	100.013	-30.441	0.565	0.269	80.857	30.710	
3	5.4	-48.323	107.604	0.269	0.565	37.369	78.030	
1	4.5	59.298	-22.558	0.602	0.262	108.915	44.478	
	4.3	-22.558	59.298	0.262	0.602	44.478	108.915	

Таблица 9. Значения коэффициентов матриц L, C, Z для рассматриваемых структур при t = 110 с с различных при различных ε_r (AD1000).

Структура	ε _r	C ,	С , пФ/м		L , мкГн/м		Z , Ом/м	
2	0.85	137.355	-52.026	0.564	0.267	69.128	29.545	
Ζ	9.85	-52.026	137.355	0.267	0.564	29.545	69.128	
2	10 55	146.188	-55.197	0.564	0.267	66.969	28.584	
Z	10.55	-55.197	146.188	0.267	0.564	28.584	66.969	
2	0.95	181.979	-49.132	0.565	0.269	59.366	21.562	
5	9.85	-87.977	197.456	0.269	0.565	27.335	57.066	
2	10 55	195.053	-52.075	0.565	0.269	57.294	20.729	
3	10.55	-94.283	211.769	0.269	0.565	26.371	55.059	
1	10.2	117.868	-43.265	0.602	0.262	76.787	30.860	
	10.2	-43.265	117.868	0.262	0.602	30.860	76.787	

Видно, что с увеличением времени травления значения коэффициентов матриц C и Z уменьшаются, а L – увеличиваются. Изменение рассматриваемых параметров связано с изменением формы проводника. Площадь поперечного сечения проводника уменьшается, что приводит к результату, описанному выше. Также видно, что у структуры с диэлектрическим заполнением из FR-4 наблюдается большее рассматриваемых изменение параметров между структурами с трапециевидными и прямоугольными проводниками. Так, для структуры с диэлектрической подложкой из FR-4 значение C₁₁ увеличилось в 1.17 раза (между случаем t = 110 с при формах проводников 1 и 2). Значения L_{11} и Z₁₁ уменьшились в 1.07 и 1.1, соответственно. Также в ходе моделирования получены зависимости выходных напряжений для рассматриваемых структур, представленные на рисунке 7.

Рис. 7. Зависимости выходных напряжений для структур связанной МПЛ с диэлектриками из FR-4 (*a*) и AD1000 (*б*) с проводниками формы 2 при $\varepsilon_r = 3.6$, 9.85 (—); 2 при $\varepsilon_r = 5.4$, 10,55 (– ·); 3 при $\varepsilon_r = 3.6$, 9.85 (···); 3 при $\varepsilon_r = 5.4$, 10,55 (- ·) и формы 1 (—) (квазистатический анализ).

Видно, что форма проводников 2 характеризуется минимальным временем задержки *T* для FR-4, которое составило 0.249 нс при $\varepsilon_r = 3.6$. Также следует,

что 3 форма проводников характеризуется максимальным значением времени задержки *T*, которое соответствует 0.332 и 0.464 нс для FR-4 и AD1000, соответственно. Выявлено, что форма 2 характеризуется средними значениями *T*, которые составили 0.376 и 0.391 нс для AD1000. Также в структурах с материалом AD1000 значение напряжения изменяется незначительно. Однако с материалом FR-4 видно изменение напряжения у структуры с проводниками формы 3. Наибольшая разница амплитуд напряжений на выходе активной линии наблюдается между сигналами структур с проводниками формы 1 и 3 (разница составила 0.016 В). Также видно, что длительности сигналов отличаются. В случае структур с материалом AD1000, сигнал имеет треугольную форму, что связано с потерями, которые больше в таких структурах. В таблице 10 представлены значения вычисленных *N*-норм для рассматриваемых структур с диэлектриком FR-4 при различном ε_r .

Таблица 10. Значения вычисленных *N*-норм для рассматриваемых структур с диэлектриком FR-4 при различных ε_r .

Структура	ε _r	N_1	$N_2 \cdot 10^{-9}$	$N_3 \cdot 10^{11}$	$N_4 \cdot 10^{11}$	$N_{5} \cdot 10^{6}$
2	3.6	0.435	8.871	5	5.023	3.882
2	5.4	0.451	8.995	5	5	3.943
3	3.6	0.435	5.772	5	5	3.66
3	5.4	0.365	5.785	5	5.001	3.473
1	4.5	0.432	9.026	4.999	5.028	3.897

Из таблицы 10 видно, что минимальное значение N_1 наблюдается при 3 форме проводников с ε_r равным 5.4. Так же выявлено, что 3 форма проводников обладает наименьшими значениями среди всех *N*-норм. Дополнительно, к этому видно, что на значения N_3 не оказывает влияния ни форма проводников, ни изменение диэлектрической проницаемости. В таблице 11 представлены вычисленные значения *N*-норм для рассматриваемых структур с диэлектриком AD1000 при различном *t* и ε_r . Видно, что минимальным значением N_1 обладает 3 форма проводников со значением относительной диэлектрической проницаемости 9.85. Так же видно, что значения N_3 и N_4 практически не изменяются при различных формах проводников и ε_r . Максимальное значение N_3 соответствует 3 форме проводников с $\varepsilon_r = 10.55$ и временем травления 140 с. На рисунке 8 представлены частотные зависимости модуля коэффициента передачи с диэлектриками из FR-4 (*a*) и AD1000 (*б*).

Рис. 8. Частотные зависимости модуля коэффициента передачи с диэлектриками из FR-4 (*a*) и AD1000 (δ) с проводниками формы 2 при t = 110 с (—); 2 при t = 140 с (—); 3 при t = 110 с (···); 3 при t = 140 с (- -) и формы 1 (—) (квазистатический анализ).

Из рисунка 8*а* видно, что изменение є, для 3 формы проводников приводит к уменьшению ослабления с 18 до 14 дБ. Также выявлено, что изменение диэлектрика приводит к увеличению вносимого ослабления. Дополнительно к этому выявлено, что структура с проводниками формы 1 вносит небольшое ослабление на высоких частотах.

3. Результаты электродинамического моделирования

Использование среды электродинамического анализа позволяет провести тщательное исследование изучаемого объекта за счет учета распространения как квази Т-волн, так и высших типов волн. Характеристики структур получены в среде электродинамического моделирования COMSOL Multiphysics. Получены частотные зависимости характеристик рассматриваемых структур (рисунок 9).

Рис. 9. Частотные зависимости модуля коэффициента передачи с диэлектриками из FR-4 (*a*) и AD1000 (б) с проводниками формы 2 при t = 110 с (—); 2 при t = 140 с (—); 3 при t = 110 с (···); 3 при t = 140 с (- -) и формы 1 (—) (электродинамический анализ).

При электродинамическом моделировании получено значительно большее ослабление относительно результатов, представленных на рисунке 9. Наблюдаемые расхождения результатов двух видов моделирования связаны с тем, что в квазистатическом моделировании рассматривается структура при распространении квази Т-волны, а в электродинамическом моделировании помимо нее распространяются более высокие типы волн. Из-за разницы форм проводников и значений ε_r увеличивается вносимое затухание после 5 ГГц. При увеличении времени травления резонансы сдвигаются в сторону больших

частот. При этом увеличение времени травления приводит к незначительному увеличению вносимого ослабления на высоких частотах (2 и 3 формы проводников).

На рисунке 10 показаны результаты электродинамического моделирования во временной области.

Рис. 10. Зависимости выходных напряжений для структур связанной МПЛ с диэлектриками из FR-4 (*a*) и AD1000 (б) с проводниками формы 2 при *t* = 110 с (−−); 2 при *t* = 140 с (− ·); 3 при *t* = 110 с (−−); 3 при *t* = 110 с (−−) и формы 1 (- -) (электродинамический анализ).

Видно, что формы напряжения на дальнем конце сигнального проводника различаются по времени прихода импульсов. Также наблюдается незначительное отличие в пиковом значении. Дополнительно к этому выявлено, что изменение диэлектрика с FR-4 на AD1000 приводит к сдвигу импульса во временной области. Это вызвано тем, что увеличивается задержка 2 моды, которая распространяется преимущественно в диэлектрике. Из-за этого импульс приходит позже по времени (на 0.139 нс). Также из рисунка 10 видно, что структуры с проводниками 3 формы имеют минимальную задержку.

В таблице 12 представлены вычисленные *N*-нормы временных откликов в конце активной линии, полученных при помощи электродинамического моделирования для структуры с диэлектриком из материала с FR-4.

Таблица 12. Вычисленные *N*-нормы временных откликов в конце активной линии, полученных при электродинамическом анализе для структуры с диэлектриком FR-4.

Структура	<i>t</i> , c	N_1	$N_2 \cdot 10^{-9}$	$N_3 \cdot 10^{11}$	$N_4 \cdot 10^{11}$	$N_5 \cdot 10^6$
1	-	0.378	6.245	4.897	4.905	3.375
2	110	0.401	6.787	4.922	4.939	3.556
2	140	0.39	6.782	4.908	4.91	3.474
3	110	0.371	5.386	4.906	4.927	3.33
3	140	0.379	5.852	4.903	4.907	3.366

Из таблицы 12, видно, что минимальным значением N_1 обладает структура с 3 формой проводников и временем травления 110 с. Так же видно, что все структуры обладают незначительным расхождением в значениях N_4 и N_5 . Однако так же видно, что 3 форма проводников при различном времени травления обладает наименьшими значениями N_2 . В таблице 13 представлены вычисленные *N*-нормы временных откликов в конце активной линии полученных при помощи электродинамического моделирования для материала с AD1000.

Таблица 13. Вычисленные *N*-нормы временных откликов в конце активной линии полученных при электродинамическом анализе для структуры с диэлектриком AD1000.

Структура	<i>t</i> , c	N_1	$N_2 \cdot 10^{-9}$	$N_3 \cdot 10^{11}$	$N_4 \cdot 10^{11}$	$N_5 \cdot 10^6$
1	-	0.364	4.823	4.913	4.935	3.317
2	110	0.382	4.951	4.92	4.953	3.435
2	140	0.388	5.014	4.908	4.95	3.472
3	110	0.348	4.27	4.923	4.947	3.273
3	140	0.355	4.2	4.902	4.921	3.281

Из таблицы 13 видно, что 3 форма проводников обладает также минимальными значениями *N*-норм. Минимальное значение *N*₁ составило 0.348, а максимальное – 0.388 для структуры с 2 формой проводников. Таким образом, видно, что формы проводников и время травления влияют на временные характеристики.

После рассматривались структуры с геометрическими значениями, соответствующими t = 110 с. Изменялись значения ε_r для материалов FR-4, AD1000. Проведено моделирование каждой структуры при различных ε_r при t = 110 с. Получены частотные зависимости характеристик рассматриваемых структур (рисунок 11).

Рис. 11. Частотные зависимости связанной двухпроводной МПЛ с диэлектриками из FR-4 (*a*) и AD1000 (б) с проводниками формы 2 при *t* = 110 с (—); 2 при *t* = 140 с (···); 3 при *t* = 110 с (- -); 3 при *t* = 110 с (- -) и формы 1 (—) (электродинамический анализ).

Из рисунка 11*а* видно, что структуры обладают большим ослаблением, чем при квазистатическом моделировании. Так же видно, что максимальное ослабление для материала FR-4 составляет -32 дБ и, что соответствует 3 структуре и $\varepsilon_r = 5.4$. Из рисунка 11*б* видно, что максимальное ослабление для материала AD1000 составляет -27 дБ, что соответствует 2 структуре и $\varepsilon_r = 9.85$. Для дополнительного анализа приведем результаты электродинамического моделирования во временной области (рисунок 12) при изменении ε_r .

Рис. 12. Зависимости выходных напряжений для структур связанной МПЛ с диэлектриками из FR-4 (*a*) и AD1000 (б) с проводниками формы 2 при *t* = 110 с (—); 2 при *t* = 140 с (− ·); 3 при *t* = 110 с (···); 3 при *t* = 110 с (−−) и формы 1 (—) (электродинамический анализ).

Видно, что формы напряжения на дальнем конце сигнального проводника различаются по времени прихода импульсов. Также наблюдается незначительное отличие в пиковом значении. Дополнительно к этому выявлено, что изменение диэлектрика с FR-4 на AD1000 приводит к сдвигу импульса во временной области. Это вызвано тем, что увеличивается задержка 2 моды, которая распространяется преимущественно в диэлектрике. Из-за этого импульс приходит позже по времени (на 0.139 нс). Также из рисунка 12 видно, что структуры с проводниками 3 формы имеют минимальную задержку.

В таблице 14 представлены вычисленные значения *N*-норм электродинамического моделирования для материала FR-4 при изменении ε_r.

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, eISSN 1684-1719, №11, 2024</u>

Структура	ε _r	N_1	$N_2 \cdot 10^{-9}$	$N_3 \cdot 10^{11}$	$N_4 \cdot 10^{11}$	$N_5 \cdot 10^6$
1	4.5	0.378	6.245	4.897	4.905	3.375
2	3.6	0.396	7.278	4.925	4.938	3.533
2	5.4	0.354	4.682	4.784	4.827	3.212
3	3.6	0.359	5.651	4.707	4.738	3.224
3	5.4	0.398	6.223	4.928	4.938	3.525

Таблица 14. Вычисленные значения *N*-норм при электродинамическом анализе для структуры с FR-4 при различных ε_r.

Из таблицы 14 видно, что минимальными значениями N₁, N₂, N₅ обладает структура с проводниками в форме 2 при $\varepsilon_r = 5.4$. Однако минимальными значениями N₃, N₄ обладает уже структура с проводниками в форме 3 со значением $\varepsilon_r = 3.6$. В таблице 15 представлены вычисленные значения электродинамического моделирования для материала AD1000 при изменении ε_r . Таблица 15. Вычисленные значения N-норм при электродинамическом анализе для структуры с AD1000 при различных ε_r .

Структура	ε _r	N_1	$N_2 \cdot 10^{-9}$	$N_3 \cdot 10^{11}$	$N_4 \cdot 10^{11}$	$N_5 \cdot 10^6$
1	10.2	0.364	4.823	4.913	4.935	3.317
2	9.85	0.384	4.964	4.918	4.95	3.447
2	10.55	0.379	4.874	4.92	4.97	3.447
3	9.85	0.354	4.324	4.923	4.948	3.447
3	10.55	0.347	4.179	4.924	4.943	3.447

Из таблицы 15 видно, что минимальным значением N_1 , N_2 обладает структура с проводниками в форме 3 со значением $\varepsilon_r = 9.85$. Однако минимальными значениями N_3 , N_4 , N_5 обладает уже структура с проводниками в форме 1 со значением $\varepsilon_r = 10.2$.

Заключение

Проведен анализ влияния времени травления и изменения ε_r материалов на частотные и временные характеристики связанной МПЛ. Из результатов видно, что с увеличением времени травления, собственные значения С и Z уменьшаются, а L – увеличиваются. Это связано с уменьшением площади поперечного сечения проводника, а также изменением значений ε_r материалов. Выявлено, что увеличение времени травления приводит к изменению формы

напряжения на дальнем конце активного проводника. Для структур с материалом FR-4 видно изменение напряжения у структуры с проводниками формы 3. Наибольшая разница амплитуд напряжений на выходе активной линии наблюдается между сигналами структур с проводниками формы 1 и 3 (разница составила 0.044 В). Увеличение времени травления в зависимости от формы проводников, как увеличивает, так и уменьшает значения *N*-норм. Так, в случае N_1 выявлено, что максимальное ослабление соответствует проводникам в форме перевернутой трапеции (3).

Анализ частотных характеристик показал, что изменения времени травления и ε_r материалов приводит к изменению f_{cp} , а также к увеличению максимального ослабления на 10 дБ, соответственно для FR-4 и 2 дБ для AD1000 при электродинамическом моделировании. Так же получено, что для 3 формы проводников сохраняется максимальное ослабление при электродинамическом и квазистатическом моделировании. Так же получено, что изменение диэлектрика в данном исследовании не повлияло на значение максимального ослабления коэффициента передачи.

Рекомендации к применению состоят в том, что при перетравлении проводников уменьшаются геометрические параметры, такие, как ширина проводников. В частности, получено, что при увеличении времени травления уменьшаются собственные значения погонной емкости и индуктивности. Также получено, что 3 форма проводников обладает наилучшими характеристиками с точки зрения помехоподавления. Структура с прямоугольной (1) формой проводников обладает наименьшими значениями погонной емкости. Это оказывает влияние на характеристики связанной МПЛ.

Финансирование: Исследование выполнено в рамках проекта FEWM-2024-0005 Минобрнауки России.

Литература

- Paul C.R., Scully R.C., Steffka M.A. Introduction to electromagnetic compatibility. John Wiley & Sons, Inc., 2022.
- 2. Violette N. Electromagnetic compatibility handbook. Springer, 2013.
- Evangelista J. et al. Radiated and Conducted EMI by RF Fields at Hospital Environment //2021 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC). – IEEE, 2021. – C. 1-4.
- Wei J. et al. NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems // Expert Systems with Applications. – 2020. – T. 158. – C. 113504.
- Данилова Е.А. Классификация дефектов печатных плат // Труды международного симпозиума «Надежность и Качество». – 2013. – Т. 1. – С. 325-328.
- 6. ГОСТ Р 56251 2014. Платы печатные. Классификация дефектов.
 М.: СТАНДАРТИНФОРМ. 2014. С. 107.
- Шихов С. Печатные платы с повышенными требованиями к надежности.
 Вопросы проектирования // Электроника: Наука, технология, бизнес. 2013.
 №. 2. С. 164-169.
- Уайтт К., Рентюк В. Особенности конструирования печатных плат с выполнением требований по ЭМС // Компоненты и технологии. – 2019. – №. 6. – С. 121-128.
- Кузьмин Н.О., Жечев Е.С. Оценка влияния параметров травления на характеристики однопроводных и многопроводных линий передачи // Журнал радиоэлектроники. – 2023. – №. 11.
- Nikita K., Zhechev Y. Influence of Etching Time on Per-Unit-Length Parameters of Microstrip Lines // 2022 International Siberian Conference on Control and Communications (SIBCON). – IEEE, 2022. – C. 1-4.

- 11. Мурманский, М.С. Исследование влияния изменения относительной диэлектрической проницаемости подложки микрополоскового полосового фильтра на его частотные характеристики // Перспективы развития фундаментальных наук : сборник научных трудов XX Международной конференции студентов, аспирантов и молодых ученых, Томск, 25–28 апреля 2023 года / Национальный исследовательский Томский политехнический университет. Том 7. 2023. – С. 94-96.
- Djordjevic A.R. et al. Wideband frequency-domain characterization of FR-4 and time-domain causality // IEEE Transactions on electromagnetic compatibility. – 2001. – T. 43. – №. 4. – C. 662-667.
- 13. AD1000: High Dielectric Constant Laminate // RF Globalnet. URL: https://www.rfglobalnet.com/doc/high-dielectric-constant-substrate-ad1000-0002
- Das P., Mandal K. Multiband Reflection and Transmission mode Linear to Circular Polarizer integrated Microstrip Patch Antenna // 2020 International Symposium on Antennas & Propagation (APSYM). – IEEE, 2020. – C. 7-10.
- Bielik T., Adamec B., Hottmar V. Determination of FR-4 dielectric constant for design of microstrip band-stop filter purposes // 2019 29th International Conference Radioelektronika. – IEEE, 2019. – C. 1-6.
- ГОСТ IEC61188-1-2–2013. Печатные платы и печатные узлы проектирование и применение часть1-2. 2014. С.39.
- 17. Галецкий Ф. Производство печатных плат. Современные технологии //
 Электроника: Наука, технология, бизнес. 1998. №. 2. С. 43-46.
- 18. Tang Y. et al. Study on Wet Chemical Etching of Flexible Printed Circuit Board with 16-µ m Line Pitch // Journal of Electronic Materials. 2023. T. 52. №. 6. C. 4030-4036.
- Noma H., Nakanishi T. Etching process analysis based on etchant flow for highdensity build-up substrate // Proceedings of 6th Electronics Packaging Technology Conference (EPTC 2004) (IEEE Cat. No. 04EX971). – IEEE, 2004. – C. 289-293.
- Флеров В.Н. Химическая технология в производстве радиоэлекронных деталей. – Радио и связь, 1988.

- 21. Куксенко С.П. и др. Новые возможности системы моделирования электромагнитной совместимости TALGAT // Доклады Томского государственного университета систем управления и радиоэлектроники. 2015. №. 2 (36). С. 45-50.
- 22. Baum C.E. Norms and eigenvector norms // Mathematics Notes. 1979. T. 63.
 C. 1-42.

Для цитирования:

Кузьмин Н.О., Мурманский М.С., Жечев Е.С. Оценка влияния производственных дефектов на характеристики связанной микрополосковой линии. // Журнал радиоэлектроники. – 2024. – №. 11. https://doi.org/10.30898/1684-1719.2024.11.17