Journal of Radio Electronics. eISSN 1684-1719. 2024. ¹11

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2024.11.2

 

SHOCK ACTION OF SUPER-SHORT LIGHT PULSE

ON MAGNETIZATION PRECESSION

IN MAGNETOELASTIC SYSTEM

 

F.F. Asadullin 1, D.A. Pleshev 1, V.G. Shavrov 2, V.I. Shcheglov 2

 

1 Syktyvkar Forest Institute

167982, Russia, Syktyvkar, st. Lenina, 39

2 Institute of Radio Engineering and Electronics RAS

125009, Russia, Moscow, st. Mokhovaya, 11 b.7

 

The paper was received June 23, 2024.

 

Abstract. The task about interaction of super-short light pulse on magnetoelastic system which has precession motion of magnetization is investigated. As a main mechanism it is investigated the decreasing of magnetization with power light action on spin system. It is investigated the development of magnetization precession by the action of light pulse. It is found that during the pulse action the amplitude vibrations is decreased and its frequency is increased. It is investigated the precession development in different meanings of light power. It is established the multi-regime character of magnetization vibrations by small pulse duration which is the same order as signal excitation period. It is established three regimes: regime ¹1 – stabile vibrations, regime ¹2 – the destroy of stabilization, regime ¹3 – shock excitation. It is established that the main distinguishing of regime ¹3 from first two regimes is the sharp jump increasing of amplitude as magnetic so the elastic vibrations which take pulse as a result of pulse action. It is found that as a result of high power long duration pulse it is arising the regime of in-flatness magnetic component stabilization. It is found that the main role in formation of this regime plays the magnetoelastic interaction.

Keywords: precession of magnetization, power light pulse, magnetoelastic interaction.

Financing: The work was carried out within the framework of the state assignment of the V.A. Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences.

Corresponding author: Shcheglov Vladimir Ignatyevich, vshcheg@cplire.ru

 

References

1. Kirilyuk A., Kimel A.V., Rasing T. Ultrafast optical manipulation of magnetic order. // Rev. Mod. Phys. 2010. V.82. ¹3. P.2731-2784.

2. Bigot J.V., Vomir M. Ultrafast magnetization dynamics of nanostructures. // Ann. Phys. (Berlin). 2013. V.525. ¹1-2. P.2-30.

3. Walowski J., Münzenberg M. Perspective: Ultrafast magnetism and THz spintronics. // Journ. Appl. Phys. 2016. V.120. ¹14. P.140901(16).

4. Every A.G. Measurement of the near-surface elastic properties of solids and thin supported films. // Meas. Sci. Technol. (Measurement Science and Technology). 2002. V.13. P.R21-R39.

5. Ka Shen, Bauer G.E.W. Laser-induced spatiotemporal dynamics of magnetic films. // Phys. Rev. Lett. 2015. V.115. ¹19. P.197201(5).

6. Jäger J.V., Scherbakov A.V., Linnik T.I., Yakovlev D.R., Wang M., Wadley P., Holy V., Cavill S.A., Akimov A.V., Rushforth A.W., Bayer M. Picosecond inverse magnetostriction in galfenol thin films. // Appl. Phys. Lett. 2013. V.103. ¹3. P.032409(5).

7. Jäger J.V., Scherbakov A.V., Glavin B.A., Salasyuk A.S., Campion R.P., Rushforth A.W., Yakovlev D.R., Akimov A.V., Bayer M. Resonant driving of magnetization precession in a ferromagnetic layer by coherent monochromatic phonons. // Phys. Rev. B. 2015. V.92. ¹2. P.020404(5).

8. Dreher L., Weiler M., Pernpeintner M., Huebl H., Gross R., Brandt M.S., Goennenwein S.T.B. Surface acoustic wave driven ferromagnetic resonance in nickel thin films: theory and experiment. // Phys. Rev. B. 2012. V.86. ¹13. P.134415(13).

9. Thevenard L., Gourdon C., Prieur J.Y., Von Bardeleben H.J., Vincent S., Becerra L., Largeau L., Duquesne J.Y. Surface-acoustic-wave-driven ferromagnetic resonance in (Ga,Mn)(As,P) epilayers. // Phys. Rev. B. 2014. V.90. ¹9. P.094401(8).

10. Janusonis J., Chang C.L., Jansma T., Gatilova A., Vlasov V.S., Lomonosov A.M., Temnov V.V., Tobey R.I. Ultrafast magnetoelastic probing of surface acoustic transients. // Phys. Rev. B. 2016. V.94. ¹2. P.024415(7).

11. Janusonis J., Jansma T., Chang C.L., Liu Q., Gatilova A., Lomonosov A.M., Shalagatskyi V., Pezeril T., Temnov V.V., Tobey R.I. Transient grating spectroscopy in magnetic thin films: simultaneous detection of elastic and magnetic dynamics. // Scientific reports. 2016. 6:29143. www.nature.com/scientificreports. P.1-10.

12. Chang C.L., Lomonosov A.M., Janusonis J., Vlasov V.S., Temnov V.V., Tobey R.I. Parametric frequency mixing in a magnetoelastically driven linear ferromagnetic oscillator. // Phys. Rev. B. 2017. V.95. ¹6. P.060409(5).

13. Lomonosov A.M., Vlasov V.S., Janusonis J., Chang C.L., Tobey R.I., Pezeril T., Temnov V.V. Magneto-elastic symmetry breaking with surface acoustic waves. // Proceedings of “The 7th International Conference on Metamaterials, Photonic Crystals and Plasmonics” (META-16 Malaga-Spain). ISSN 2429-1390. metaconferences.org. P.1-2.

14. Vlasov V.S., Makarov P.A., Shavrov V.G., Shcheglov V.I. The orientational characteristics of magnetoelastic waves excitation by femtosecond light pulses. // Zhurnal Radio electroniki – Journal of Radio Electronics. 2017. ¹6. Available at: http://jre.cplire.ru/jre/jun17/5/text.pdf.

15. Vlasov V.S., Makarov P.A., Shavrov V.G., Shcheglov V.I. The vibrations of magnetization excited by shock influence of elastic displacement. // Zhurnal Radio electroniki – Journal of Radio Electronics. 2018. ¹4. Available at: http://jre.cplire.ru/jre/apr18/3/text.pdf.

16. Beaurepaire E., Merle J.C., Daunois A., Bigot J.Y. Ultrafast spin dynamics in ferromagnetic nickel. // Phys. Rev. Lett. 1996. V.76. ¹22. P.4250-4253.

17. Koopmans B., Malinovski G., Dalla Longa F., Steiauf D., Fähnle M., Roth T., Cinchetti M., Aeschlimann M. The paradoxical diversity of ultrafast laser-induced demagnetization reconciled. // Nature Materials. Supplementary Information. 2009. P.1-4.

18. Koopmans B., Malinovski G., Dalla Longa F., Steiauf D., Fähnle M., Roth T., Cinchetti M., Aeschlimann M. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. // Nature Materials. 2010. V.9. ¹3. P.259-265. Published online: Nature Materials. Articles. 2009. P.259-265.

19. Vlasov V.S., Shavrov V.G., Shcheglov V.I. Electromagnetic radiation by shock variation of magnetization under action of femto-second light pulse. // Journal of technical physics (letters). 2021. V/47. ¹11. P.3-5.

20. Vlasov V.S., Shavrov V.G., Shcheglov V.I. Radiation of electromagnetic wave out of magnetic film by the action of femtosecond light pulse. // Zhurnal Radioelectroniki – Journal of Radio Electronics. 2020. ¹6. Available at: http://jre.cplire.ru/jre/jun20/14/text.pdf.

21. Vlasov V.S., Kotov L.N., Shavrov V.G., Shcheglov V.I. Nonlinear dynamics of establishment of magnetization in ferrite plate having magnetoelastic properties in conditions of orientation transition. // Journal of Communications Technology and Electronics. 2010. V.55. ¹6. P.689-701.

22. Vlasov V.S., Kotov L.N., Shavrov V.G., Shcheglov V.I. Nonlinear excitation of hypersound in a ferrite plate under the ferromagnetic-resonance conditions. // Journal of Communications Technology and Electronics. 2009. V.54. ¹7. P.821-832.

23. Gurevich A.G. Magnetic resonance in ferrites and antiferromagnetics. M.: Nauka. 1973.

24. Gurevich A., Melkov G. Magnetic oscillations and waves. M.: Nauka-Fizmatlit. 1994

For citation:

Asadullin F.F., Pleshev D.A., Shavrov V.G., Shcheglov V.I. Shock action of super-short light pulse on magnetization precession in magnetoelastic system. // Journal of Radio Electronics. – 2024. – ¹ 11. https://doi.org/10.30898/1684-1719.2024.11.2 (In Russian)