

DOI: https://doi.org/10.30898/1684-1719.2024.11.23 УДК: 621.396

ЛИНЕЙНАЯ ФАЗИРОВАННАЯ РЕШЁТКА ПЕЧАТНЫХ ДИПОЛЬНЫХ АНТЕНН С ЕМКОСТНЫМ ПИТАНИЕМ ДЛЯ СИСТЕМЫ СВЯЗИ 5G MM-ДИАПАЗОНА ДЛИН ВОЛН

А.В. Геворкян

Южный федеральный университет 347922, Таганрог, пер. Некрасовский, 44

Статья поступила в редакцию 31 октября 2024 г.

Аннотация. В работе представлена конструкция ранее разработанного элемента антенной решётки в виде печатной дипольной антенны с емкостным питанием. Приведено сравнение его частотных характеристик КСВН в составе бесконечной антенной решётки и в составе синфазной антенной решётки размером 4 × 4. Показано, что в диапазоне частот от 25 до 26 ГГц КСВН элемента в составе бесконечной решётки не превышал 1,3, а в составе решётки размером 4 × 4 не превышает 1,6 (у центральных элементов – 1,5). Целью данной работы было разработать линейную фазированную антенную решётку на основе ранее разработанного элемента и оценить стабильность её частотных характеристик КСВН. Была разработана 8-миэлементная линейная фазированная решётка со сканированием в Н-плоскости в секторе углов ±45°. Все кроме крайних элементов имеют хорошую повторяемость характеристик (разброс значений не превышает 0,10 при КСВН \leq 1,5 и 0,15 при остальных значениях КСВН). При этом в диапазоне от 25 до 26 ГГц при отсутствии сканирования значения КСВН ≤ 1,42 и КСВН ≤ 2,06 – при угле сканирования равном ±45°. Развязка между элементами решётки равна более 17,5 дБ.

Ключевые слова: 5G, емкостное питание, дипольная антенна, миллиметровые волны, развязка, фазированная антенная решётка.

Финансирование: Исследование выполнено за счет гранта Российского научного фонда № 23-29-00970 (https://rscf.ru/project/23-29-00970/) в ЦКП «Прикладная электродинамика и антенные измерения» Южного федерального университета в г. Таганроге.

Автор для переписки: Геворкян Армен Валерьевич, gevorkyan.scp@yandex.ru.

Введение

При разработке антенных решёток для систем связи, необходимо добиваться как можно лучшего их согласования с линией питания. Важно иметь и хорошую повторяемость характеристик элементов антенной решётки (особенно – частотных характеристик КСВН), чтобы они имели минимальные отличия даже в составе малоэлементных антенных решёток. В предыдущей работе удалось разработать такой элемент антенной решётки для 5G [1]. Электродинамическая модель его конструкции приведена на рис. 1. Он состоит из двух диэлектрических подложек ($\varepsilon = 3,55$), двух плеч полоскового диполя (0,5 мм (1,8 мм) × 2,2 мм) и имеет емкостное питание [2-4] от расположенного между подложками полоска (0,8 мм × 1,5 мм), к которому подключена жила коаксиального кабеля. Размеры элемента: 6 мм × 6 мм× -0,7 мм.

Рис. 1. Конструкция элемента антенной решётки: а) общий вид, б) вид сбоку.

На рис. 2 приведены частотные характеристики КСВН таких элементов синфазной антенной решётки размером 4×4 . Для сравнения, в виде кривой с окружностями, приведена частотная характеристики КСВН элемента в составе бесконечной антенной решётки. Видно, что в диапазоне частот от 25 до 26 ГГц КСВН элемента в составе бесконечной решётки не превышал 1,3, а в составе решётки размером 4×4 не превышает 1,6 (у центральных элементов – 1,5).

Рис. 2. Частотные характеристики КСВН.

Целью данной работы было разработать линейную фазированную антенную решётку на основе ранее разработанного элемента и оценить стабильность его характеристик. Характеристики было необходимо оценивать в диапазоне частот от 25 до 26 ГГц, для которого разрабатывался данный элемент.

1. Конструкция линейной антенной решётки

Конструкция разработанной электродинамической модели антенной решётки приведена на рис. 3.

Рис. 3. Конструкция антенной решётки.

Решётка состоит из 8-ми элементов, которые расположены в линию в Н-плоскости. Т.е. она может иметь сканирование в Н-плоскости. Для уменьшения краевого эффекта и увеличения коэффициента усиления, по сравнению с исходной конструкцией, была увеличена ширина элемента в Е-плоскости и рядом с первым и последним элементами были добавлены пустые «элементы». Поперечные размеры решётки: 15 мм × 60 мм.

2. Характеристики антенной решётки

На рис. 4 приведены частотные характеристики КСВН элементов антенной решётки при разных значениях угла сканирования Θ в Н-плоскости. В соответствии с рис. 3, сплошные кривые соответствуют 2-8 элементам, — · — – первому (крайнему справа) и — · · — – восьмому (крайнему слева).

Рис. 4. КСВН при Θ : a) 0°, б) ±15°, в) ±30° и г) ±45°.

Из рис. 4а видно, что при отсутствии сканирования в требуемом диапазоне частот КСВН всех элементов не превышает 1,42 (во всём 5G мм-диапазоне

длин волн (24.25-27.50 ГГц) значения КСВН \leq 2,33). Характеристики крайних элементов почти совпадают, они имеют лучшее согласование, чем остальные элементы, и у них маленький разброс значений. Из рис. 4б, в, г видно, что при сканировании значения КСВН увеличиваются, а характеристики крайних элементов не совпадают. При $\Theta = \pm 15$ и $\pm 30^{\circ}$ КСВН крайних элементов больше, чем у остальных элементов, а при $\Theta = \pm 45^{\circ}$ – меньше. Максимальные значения КСВН наблюдаются при $\Theta = \pm 45^{\circ}$. У крайних элементов он равен 1,94, а у остальных – 2,06.

Из рисунков видно, что в рабочей полосе частот все кроме крайних элементов имеют хорошую повторяемость характеристик КСВН. Разброс значений не превышает 0,10 при КСВН ≤ 1,5 и 0,15 при остальных значениях КСВН.

Рис. 5. Реализованный коэффициент усиления.

Из рис. 5 видно, что при $\Theta = 0^{\circ}$ значения реализованного коэффициента усиления находятся в диапазоне от 15,4 до 15,7 дБ. При увеличении Θ до ±45° его значения уменьшаются на 1,3-1,8 дБ до значений от 13,9 до 14,1 дБ. При сканировании уменьшение коэффициента усиления должно быть пропорционально соs(Θ) (без учета влияния Θ на КСВН). Т.е. при $\Theta = \pm 45^{\circ}$ он должен уменьшаться на 1,5 дБ и изменение реализованного коэффициента

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, elSSN 1684-1719, №11, 2024

усиления антенной решётки близко к этому значению. Небольшое отличие связано с влиянием Θ на значения КСВН. Помимо этого, анализ ДН в Е-плоскости (рис. 6) показывает, что при увеличении Θ её ширина уменьшается. Т.е. в Е-плоскости коэффициент использования поверхности зависит от Θ и растёт с его увеличением. Это компенсирует уменьшение реализованного коэффициента усиления из-за влияния Θ на значения КСВН, который растет с увеличением Θ . При этом увеличение ширины ДН в Н-плоскости с ростом Θ примерно пропорционально $\cos(\Theta)$ – она увеличивается с 12,0° при Θ = 0° до 16,7° при Θ = ±45° (см. рис. 7). Из рис. 6 также видно, что максимум ДН имеет смещение, которое зависит от Θ . Это связано с несимметричностью схемы питания. Из рисунков также видно, что уровень боковых лепестков ДН не превышает –10,9 дБ в Е-плоскости и –15,4 дБ в Н-плоскости.

Рис. 6. Нормированные ДН в Е-плоскости на частоте 25,5 ГГц.

Рис. 7. Нормированные ДН в Н-плоскости на частоте 25,5 ГГц.

На рис. 8 приведены частотные характеристики КПД при следующих значениях угла сканирования Θ: _____ -0; ______15; _____±30 и _____±45°.

Видно, что в требуемом диапазоне частот КПД имеет максимальные значения. При $\Theta = 0^{\circ}$ он превышает 97%, и находится в диапазоне от 88 до 91% при $\Theta = \pm 45^{\circ}$. Это связано с маленькими значениями КСВН и низкими тепловыми потерями, а также с небольшими значениями коэффициентов передачи $S_{m,n}$. Коэффициенты передачи (развязка) между элементами решётки приведены на рис. 9, где сплошные линии соответствуют $S_{m,n}$ между соседними элементами решётки (1 и 2; 2 и 3; и т.д.), а штриховые – через один элемент (1 и 3; 2 и 4; и т.д.). В первом случае $S_{m,n} \leq -17,5$ дБ, а во втором – $S_{m,n} \leq -31,2$ дБ. Т.е. разработанную решётку можно использовать и для систем МІМО.

Рис. 9. Коэффициенты передачи.

Заключение

Результаты исследований показывают, что частотные характеристики КСВН всех кроме крайних элементов антенной решётки сохраняют хорошую повторяемость при всех исследованных значениях угла сканирования в Н-плоскости. Разброс значений не превышает 0,10 при КСВН ≤ 1,5 и 0,15

при остальных значениях КСВН. Таким образом, разработанная печатная дипольная антенна с емкостным питанием может найти применение при разработке антенных решёток для систем связи 5G мм-диапазона длин волн.

Финансирование: Исследование выполнено за счет гранта Российского научного фонда № 23-29-00970 (https://rscf.ru/project/23-29-00970/) в ЦКП «Прикладная электродинамика и антенные измерения» Южного федерального университета в г. Таганроге.

Литература

- Gevorkyan A.V. 5G Millimeter Wave Range Capacitive Feed Printed Dipole Antenna Array // Microwave Review. – 2024. – Vol. 30. – №. 2. https://doi.org/10.18485/mtts_mr.2024.30.2.12
- Ying L., Jianping L., Ping L. Designing a Novel Broadband Microstrip Antenna with Capacitive Feed // Proceedings of 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, (Harbin, July 26–30, 2011). – 2011. – P. 156–159. https://doi.org/10.1109/CSQRWC.2011.6036909.
- Jongkuk Park, Hyung-gi Na, Seung-hun Baik. Design of a modified L-probe fed microstrip patch antenna // IEEE Antennas and Wireless Propagation Letters. – 2004. – Vol. 3. – P. 117–119. https://doi.org/10.1109/LAWP.2004.829999.
- 4. Li P., Lau K. L., Luk K. M. A Study of the Wide-Band L-Probe Fed Planar Patch Antenna Mounted on a Cylindrical or Conical Surface // IEEE Transactions on Antennas and Propagation. – 2005– Vol. 53. – № 10. – P. 3385–3389. https://doi.org/10.1109/TAP.2005.856374.

Для цитирования:

Геворкян А.В. Линейная фазированная решётка печатных дипольных антенн с емкостным питанием для системы связи 5G мм-диапазона длин волн. // Журнал радиоэлектроники. – 2024. – №. 11. https://doi.org/10.30898/1684-1719.2024.11.23