

DOI: https://doi.org/10.30898/1684-1719.2024.11.32 УДК: 538.945

О ПРЕВЫШЕНИИ ПЛОТНОСТИ ТОКА РАСПАРИВАНИЯ В ГОРЯЧЕМ ПЯТНЕ СВЕРХПРОВОДНИКОВОГО ОДНОФОТОННОГО ДЕТЕКТОРА

Д.Ю. Коротков¹, А.В. Семенов^{2,1}

¹Московский педагогический государственный университет 119435, Москва, ул. М. Пироговская, 1, стр. 1

²Московский физико-технический институт 141701, Московская обл., Долгопрудный, Институтский пер., 9

Статья поступила в редакцию 30 сентября 2024 г.

Аннотация. Исследуется устойчивость состояния с вихрями в пятне с подавленным параметром порядка в тонкой сверхпроводниковой пленке. Аналитически задача рассмотрена в рамках линейной теории Лондонов, при параметре порядка внутри пятна много меньшем, нежели снаружи. Для исследования устойчивости вычислен энергетический барьер для разрыва пары вихрей током и найден сверхтекучий импульс, при котором барьер обращается в ноль. Найденное решение демонстрирует стабилизацию вихрей благодаря отталкиванию от границ пятна и показывает, что в пятне критический сверхтекучий импульс превышает критическое значение импульса в однородной ситуации.

Ключевые слова: горячее пятно в тонких сверхпроводниковых плёнках, превышение тока распаривания, сверхпроводниковый однофотонный детектор. Финансирование: грант РНФ №23-72-00046

Автор для переписки: Семенов Александр Владимирович, a_sem2@mail.ru

Введение

Локальное подавление сверхпроводимости избыточными квазичастицами, порожденными при поглощении фотона, лежит в основе работы сверхпроводниковых однофотонных детекторов (SSPD, [1]). При не слишком больших энергиях фотона (для обычно используемых пленок NbN – порядка 0.1-0.2 эВ [2]), сверхпроводимость в «горячем пятне» не разрушается полностью – параметр порядка значительно подавлен, но всё ещё не равен нулю. Критический ток сверхпроводящей полоски при появлении горячего пятна уменьшается, и, если он оказывается меньше тока смещения, появляется сопротивление и регистрируется фотоотчёт.

Наиболее сильное подавление сверхпроводимости током происходит в области с уже подавленным параметром порядка, т.е. внутри горячего пятна. В качестве критерия появления сопротивления, обычно используется превышение локальной плотности тока распаривания [3]. В настоящей работе мы показываем, что этот критерий должен быть уточнен.

Как известно, появление сопротивления в пленках шириной больше нескольких длин когерентности происходит за счет рождения пары вихрей противоположной циркуляции. При критическом токе барьер свободной энергии для такого процесса обращается в ноль, и за счет непрерывного рождения и движения вихрей к краям пленки появляется резистивная перемычка по всей ее ширине. Однако, в тонких пленках эффективный размер вихря определяется длиной Пирла и оказывается велик по сравнению с длиной когерентности. Поэтому на величину барьера влияет не только локальная плотность тока, но и распределение параметра порядка в окрестности точки рождения вихрей. Мы в простейшей качественной модели оценим влияние границ пятна на барьер свободной энергии и покажем, что этот барьер, вообще говоря, увеличивается.

1. Модель.

взаимодействии вихрей с током будем рассматривать Задачу о лондоновском приближении. Предполагая, длина когерентности что В много меньше длины проникновения магнитного поля в пленку, пренебрежем вкладом в свободную вихря от изменения энергии конденсации в его центре. Влияния тока на кинетическую индуктивность пленки также учитывать не будем. Кроме того, для простоты предположим, что параметр порядка вне области с подавленной сверхпроводимостью много больше, чем в области с подавленной сверхпроводимостью, и что граница области с подавленной сверхпроводимостью – резкая (параметр порядка меняется скачком). Пара вихрей в такой геометрии схематически показана на рис. 1.

Рис. 1. Пара вихрей противоположной циркуляции в «горячем пятне».

2. Критический сверхтекучий импульс в однородной пленке.

Сначала покажем, как в рассматриваемой линейной модели в принципе может введен критический сверхтекучий импульс. Рассмотрим бесконечную пленку. Свободная энергия состояния с парой вихрей в присутствие тока складывается из энергий одиночных вихрей, энергии их взаимодействия друг с другом, и энергии взаимодействия с током. В лондоновском приближении, свободная энергия такого состояния есть:

$$F = \frac{\Phi_0^2}{2\pi L_k} \ln\left(\frac{R}{\xi}\right) - \Phi_0 R j , \qquad (1)$$

где Φ_0 – квант магнитного потока, L_k – кинетическая индуктивность квадрата пленки, R – расстояние между вихрями, ξ – размер кора вихря, j – сверхток. Выражая сверхток через сверхтекучий импульс, $j = \frac{\Phi_0}{2\pi L_k}p$, и находя максимум выражения по R, приходим к равенству, выражающему равенство нулю полной силы, действующей на каждый из вихрей пары: $p = \frac{1}{R}$. При таком соотношении между сверхтекучим импульсом и расстоянием между вихрями, в линейной модели реализуется неустойчивое равновесие между притяжением вихрей друг к другу и растаскиванием их силой Лоренца. Однако, сила притяжения между вихрями, потенциал которой описывается первым слагаемым в (1), неограниченно возрастает с уменьшением расстояния. Чтобы получить критической сверхтекучий импульс, введем расстояния R_{min} такое, что при $R < R_{min}$ потенциал притяжения обращается в константу. Тогда для критического сверхтекучего импульса имеем $p_{c0} = \frac{1}{R_{min}}$. Эту величину следует отождествить со сверхтекучим импульсом распаривания, который в теории Гинзбурга-Ландау есть $p_{dep} = \frac{1}{\sqrt{3\xi}}$ [4,5], откуда $R_{min} = \sqrt{3}\xi$.

3. Критический сверхтекучий импульс в горячем пятне.

Учтем теперь, что горячее пятно окружено сверхпроводящей пленкой с бОльшим параметром порядка. В случае, когда концентрация сверхпроводящих электронов в окружающей пленки много больше таковой в горячем пятне, $n_{s,out} \gg n_s$, можно полагать градиент фазы, наведенной вихрем в окружающей пленке, пренебрежимо малым (в противном случае, в ней потек бы, в пределе, бесконечно большой вихревой сверхток). Тангенциальная компонента градиента фазы, однако, должна быть непрерывна на границе, следовательно, можно считать, что градиент фазы вихря на границе скомпенсирован градиентом фазы его изображения – фиктивного вихря той же циркуляции.

Рис. 2. Модельная задача: пара вихрей противоположной циркуляции в полоске с ослабленной сверхпроводимостью внутри пленки с сильной сверхпроводимостью. Сверхток течет параллельно полоске. Синим и красным обозначены изображения вихрей первого и второго порядка, полученные соответственно однократным и двукратным отражением от краев полоски.

Ситуация, в которой расчет методом изображений может быть выполнен аналитически, представляет собой область подавленной сверхпроводимости в виде длинной полоски, ориентированной параллельно сверхтоку (рис. 2). При этом взаимодействие вихря с границами можно представить как его взаимодействие с собственными отражениями разных порядков от границ. На рис. 2 показаны изображения вихря первого порядка – его отражения от верхней и нижней границы, а также изображения второго порядка – отражения отражений первого порядка от обеих границ. Взаимодействие с вихрем противоположной циркуляции также модифицируется – добавляется взаимодействие со всеми изображениями вихря противоположной циркуляции (также показаны на рис. 2 в первом и втором порядках). В результате, добавка к энергии пары вихрей из-за наличия границ может быть записана как:

$$E_{w} = \frac{\Phi_{0}^{2}}{2\pi L_{k}} \sum_{n=1}^{\infty} (-1)^{n} \ln\left(\frac{(nw)^{2}}{(nw)^{2} - R^{2}}\right).$$
(2)

Сумма может быть вычислена аналитически в пределе, когда ширина полоски *w* ("размер пятна") много больше расстояния между вихрями *R*:

$$E_w = \frac{\Phi_0^2}{2\pi L_k} \frac{\pi}{12} \left(\frac{R}{w}\right)^2.$$
(3)

Добавив это слагаемое к (1), вновь найдя максимум свободной энергии и полагая, что он реализуется на расстоянии $R_{min} = \sqrt{3}\xi$, получаем значение для критического сверхтекучего импульса с учётом границ пятна:

$$p_{c} = p_{c0} \left(1 + \frac{\pi}{2} \frac{\xi^{2}}{w^{2}} \right)$$
(4)

Таким образом, получается, что, в присутствие окружающей пленки с сильной сверхпроводимостью, критический сверхтекучий импульс в области слабой сверхпроводимостью (обусловленный разрывом током пар co вихрей) увеличивается по сравнению с однородной пленкой со слабой сверхпроводимостью. Отметим, что это усиление не связано с эффектом близости (который модель не учитывает) и имеет чисто электродинамическое Качественно, объясняется отталкиванием происхождение. оно вихрей от областей с более сильной сверхпроводимостью, из-за которого для разрыва вихревой пары требуется больший ток. В случае пятна круглой формы, следует ожидать, что ответ в пределе w>> { качественно не изменится, однако величина коэффициента при поправочном слагаемом будет несколько больше из-за более эффективного отталкивания от круглой границы.

Заключение

Обсудим одно возможное следствие из полученного результата. Известно, что максимально возможный ток в однородном сверхпроводнике, соответствует состоянию с конечной щелью [6]. В то же время, в неоднородной ситуации, градиент фазы может быть задан граничными условиями, и сверхтекучий импульс может превысить критическое значение. В результате, в неоднородной ситуации возможно достижение бесщелевого состояния, как это имеет место, например, для двухслойных структур сверхпроводник-нормальный металл с большой разницей удельных сопротивлений [7]. Может ли реализоваться бесщелевое состояние в горячем пятне сверхпроводникового однофотонного детектора – вопрос, требующий исследования методами микроскопической теории. Однако, полученное нами из изложенных модельных соображений увеличение критического сверхтекучего импульса, указывает, как минимум на приближение сверхпроводника в горячем пятне к бесщелевому состоянию.

Финансирование: грант РНФ №23-72-00046

Литература

- Semenov A.D., Gol'tsman G.N., Korneev A.A. Quantum detection by current carrying superconducting film //Physica C: Superconductivity. – 2001. – T. 351. – №. 4. – C. 349-356.
- Vodolazov D.Y. Single-photon detection by a dirty current-carrying superconducting strip based on the kinetic-equation approach //Physical Review Applied. – 2017. – T. 7. – №. 3. – C. 034014.
- Zotova A.N., Vodolazov D.Y. Photon detection by current-carrying superconducting film: A time-dependent Ginzburg-Landau approach //Physical Review B—Condensed Matter and Materials Physics. 2012. T. 85. №. 2. C. 024509.
- 4. Langer J.S., Ambegaokar V. Intrinsic resistive transition in narrow superconducting channels //Physical Review. 1967. T. 164. №. 2. C. 498.

- 5. Vodolazov D.Y. Saddle point states in two-dimensional superconducting films biased near the depairing current //Physical Review B. – 2012. – T. 85. – №. 17. – C. 174507.
- Anthore A., Pothier H., Esteve D. Density of states in a superconductor carrying a supercurrent //Physical review letters. – 2003. – T. 90. – №. 12. – C. 127001.
- Ustavschikov S.S. et al. Approaching depairing current in dirty thin superconducting strip covered by low resistive normal metal //Superconductor Science and Technology. – 2020. – T. 34. – №. 1. – C. 015004.

Для цитирования:

Коротков Д.Ю., Семенов А.В. О превышении плотности тока распаривания в горячем пятне сверхпроводникового однофотонного детектора. // Журнал радиоэлектроники. – 2024. – №. 11. https://doi.org/10.30898/1684-1719.2024.11.32