

DOI: https://doi.org/10.30898/1684-1719.2024.11.7 УДК: 54.057

ПОЛУЧЕНИЕ ТОНКОПЛЁНОЧНЫХ ПОКРЫТИЙ ОКСИДОВ ВАНАДИЯ МЕТОДОМ ПАРОФАЗНОГО ХИМИЧЕСКОГО ОСАЖДЕНИЯ ИЗ ИЗОПРОПОКСИДА ВАНАДИЛА

Д.П. Судас, В.А. Житов, Л.Ю. Захаров, В.А. Лузанов, П.И. Кузнецов

ИРЭ им. В.А. Котельникова РАН, Фрязинский филиал РАН, 141120, Московская область, г. Фрязино, пл. академика Введенского, д.1

Статья поступила в редакцию 12 июня 2024 г.

Аннотация. Продемонстрирована методика получения оксидов ванадия различных стехиометрий из изопропоксида ванадила методом химического парофазного осаждения. Получены различные оксиды ванадия из ряда Магнелли в виде тонкоплёночных покрытий на поверхности кремния и сапфира. Нанесённые в атмосфере аргона при температурах от 220 °C до 290 °C покрытия оценивались по спектрам пропускания, комбинационного рассеяния и рентгеновской дифракции. В синтезированных полуаморфных структурах обнаружено четыре оксида (V_3O_5 , VO_2 , V_6O_{13} , V_2O_5) с разным их соотношением. В ряде образцов покрытий на кремниевых подложках при температуре 69 °C зафиксирован фазовый переход второго рода со скачком электрического сопротивления до 10 раз.

Ключевые слова: оксид ванадия, фазовый переход, оптическое волокно, тонкие плёнки.

Финансирование: Работа выполнена в рамках государственного задания ФИРЭ им. В.А. Котельникова РАН (№ 075-01110-23-01).

Автор для переписки: Судас Дмитрий Петрович, dmitriisudas@mail.ru

Введение

Оксиды ванадия нашли применение в большом числе областей науки и техники [1-3]. Прикладной и научный интерес к этим соединениям В первую очередь вызван их уникальной особенностью претерпевать фазовый переход полупроводник-металл (MIT), сопровождающийся резким электрической проводимости и оптических изменением констант [1,4]. Благодаря этому оксиды ванадия активно применяются в качестве антенн [5], фильтров [6], защитных покрытий [7], модуляторов [3,7]. При достижении определённой температуры, напряжённости электрического или оптического полей моноклинная структура перестраивается в более упорядоченную тетрагональную [1,8]. При этом, электронные свойства гистерезисного скачка проводимости существенно меняются в зависимости от используемых ориентации и состава [9-11], подложек, ИХ степени кристалличности самого оксида [4,11,12], а также присутствия летучих примесей в структуре материала [13].

Из-за перечисленных выше особенностей ряда оксидов ванадия (VO_x) для их получения используются различные методики синтеза и осаждения, отдельные максимально адаптированные под параметры конечного материала [8,9,14]. При этом большинство разработанных технологий имеют существенные ограничения на геометрию и состав подложек, структур, получаемых требуют стехиометрию использование высоких температур и необходимость поддержания низкого давления, а также окислительных или восстановительных реагентов в зоне осаждения.

Метод химического парофазного осаждения из металлоорганических соединений (MOCVD) уже применялся для получения диоксида ванадия [10,11] и отмечалось, что эта технология позволяет получать однородные структуры контролируемой стехиометрии и толщины на разнообразных подложках сложной формы. В данной работе впервые изучен прямой метод получения различных оксидов ванадия из изопропоксида ванадила без дополнительных

2

реагентов в процессе синтеза и постростового отжига в окислительной атмосфере.

Эксперименты и результаты

Для нанесения пленочного покрытия из оксидов ванадия был использован метод MOCVD. Источниками ванадия и кислорода при осаждении оксидов металла служило относительно летучее металлорганическое соединение изопропоксид ванадила, содержащее оба необходимых элемента для их получения. В качестве газа-носителя реагента использовали аргон высокой чистоты, а сам процесс осаждения проводили при его атмосферном давлении.

Для увеличения протяженности зоны осаждения и контроля ее внутри кварцевого реактора через отдельный путепровод подавался необходимый дополнительный поток аргона. Испаритель с металоорганикой термостатировали при температуре 40 °C, что обеспечивало давление паров около 0.29 мбарр. Для предотвращения конденсации реагента все газовые магистрали подогревали до 50 °C. Во всех экспериментах линейная скорость парогазовой смеси в реакторе составляла 40 см/с. Синтез проводили при температурах 220...290 °C, а качестве подложки в реакторе размещали плоскопараллельную пластинку монокристаллического кремния либо сапфира.

Скорость осаждения покрытия рассчитывали ИЗ его толщины, определенной интерференционном царапине микроскопе. ПО на линий Из-за перекрытия эмиссионных кислорода И ванадия метод рентгеновского энергодисперсионного анализа оказался не применим стехиометрии пленок. Рентгеновские определения осажденных ДЛЯ дифрактограммы высокой аморфности покрытий из-за осажденных также не позволили определить присутствующие в них фазы и их соотношение. Главным методом нашего анализа получаемых покрытий спектров комбинационного рассеяния, изучение полученная с стало раман-люминесцентного спектрометра "ИнСпектр", использованием $(\lambda = 532 \text{ нм}, \text{ мощность} = 30 \text{ мВт}, \text{ размер пятна} = 1 \text{ мкм})$. На рис. 1 показаны

3

рамановские спектры покрытий VOx толщиной около 1 мкм, осажденных при различных температурах на кремниевых и сапфировых подложках.

Рис. 1. Спектры комбинационного рассеяния покрытий VO_x на кремниевых пластинах при различных температурах синтеза: 1 - 220 °C, 2 - 238 °C, 3 - 247 °C, 4 - 255 °C, 5 - 274 °C, 6 - 289 °C.

Как видно из рисунка 1 во всех спектрах присутствуют линии характерные для четырёх оксидов ванадия [15]: $V_3O_5 - 191, 221, 282, 492$ см⁻¹; $VO_2 - 190, 220,$ 258 cm⁻¹; $V_6O_{13} - 162$, 840, 874, 927, 1023 cm⁻¹; $V_2O_5 - 140$, 403, 690, 990 cm⁻¹. Для удобства на рисунке пики маркированы геометрическими фигурами, соответствующими одному из этих оксидов. Линия около 512 см⁻¹ связана с кремниевой подложкой, ее интенсивность высокая в покрытиях с большим содержанием фазы V₂O₅ прозрачной для лазерного излучения. По мере увеличения температуры от 220 до 255 °C отчётливо видно изменение соотношения между содержанием основных фаз V2O5 и V6O13 в сторону последней. Однако дальнейшее увеличение увеличения температуры приводит уже к уменьшению фазы V₆O₁₃ в составе покрытия, что следует из соотношения интенсивностей соответствующих линий в рамановских спектрах И возрастающей интенсивности линии кремния. В отличие от основного прозрачного окисла V₂O₅ с краем фундаментального поглощения в сине-зелёной области спектра, непрозрачная в видимом диапазоне спектра фаза V_6O_{13} приводит к тому, что композиционный материал приобретает черный оттенок. В спектрах комбинационного рассеяния осажденных покрытий присутствуют пики, соответствующие фазам V_3O_5 и VO_2 , но они имеют слабую интенсивность и частично накладываются друг на друга. Тем не менее, кроме утверждения того, что количество этих двух оксидов ванадия мало, можно сделать также вывод о том, что оно слабо зависит от температуры осаждения покрытия.

Сравнение рамановских спектров покрытий равной толщины и синтезированных при одинаковых условиях на подложках из кремния и сапфира показано на рисунке 2.

Рис. 2. Спектры комбинационного рассеяния покрытий VO_x на поверхности: 1 – кремния, 2 – сапфира.

На обоих подложках осажденные пленки дают одинаковый набор пиков, которые существенно выше по интенсивности на кремниевой подложке. Это может быть объяснено меньшей степенью аморфности покрытия на Si. Использование сапфировой подложки в данной работе было необходимо для исследования пропускания покрытий в видимом и ИК-диапазонах спектра. Следует отметить, что согласно рамановским спектрам к существенному увеличению содержания фазы V_6O_{13} в осаждаемом покрытии приводит увеличение парциального давления изопропоксида ванадила в парогазовой смеси, подаваемой в реактор за счет повышения температуры испарителя. На рисунке 3 показаны спектры комбинационного рассеяния покрытий оксидов ванадия, синтезированных при различной температуре испарения ванадиевой органики.

Рис. 3. Спектры комбинационного рассеяния покрытий VO_x на кремниевых пластинах при различных температурах испарителя: 1 – 50 °C, 2 – 40 °C, 3 – 34 °C, 4 – 30 °C, 5 – 27 °C.

Другим использованным методом оценки толшины состава И осажденного покрытия является спектроскопия пропускания плёнок VO_x. Край фундаментального поглощения различных оксидов ванадия лежит в области от 400 до 1700 нм. Спектры пропускания двух плёнок VO_x на сапфире показаны на рисунке 4. Образцы, содержащие повышенное количество V₂O₅ в полученных покрытиях, демонстрируют край поглощения В области спектра ниже 400 нм. Однако ЭТО значение отличается от литературного [16] даже для V₂O₅, демонстрирующего край около 520 нм. Смещение может быть обусловлено композитным характером материала, чего поглощение некоторым образом, вследствие может, отличаться,

6

при этом характер спектра указывает на доминирующее количество V_2O_5 . Увеличение относительного количества источника ванадия в зоне реакции приводит к смещению края поглощения ближе к 1500 нм, что соответствует окислению V_3O_5 и VO_2 до V_6O_{13} .

Рис. 4. Спектры пропускания покрытий VO_x на поверхности сапфира: 1 – с малым количеством V₆O₁₃, 2 – с большим количеством V₆O₁₃.

Из полученных оксидов самым интересным является VO_2 , так как он имеет фазовый переход почти при комнатной температуре [1]. Однако, как уже было отмечено ранее, по рамановскому спектру затруднительно оценить количество диоксида ванадия в полученных покрытиях. Однако, это позволяет сделать измерение сопротивления образцов в зависимости от температуры окружающей среды. На осажденное покрытие VO_x наносились электроды на расстоянии около 5 мм друг от друга. Образцы размещали в шкафу с возможностью нагрева до 150 °C и точностью контроля температуры на уровне 0.2 °C. Для одного из образцов толщиной 1 мкм, выращенного при 255 °C на кремниевой пластине, зависимость сопротивления от температуры при нагревании и охлаждении показана на рисунке 5.

По мере нагрева от комнатной температуры до 60 °C сопротивление линейно уменьшается, а затем резко падает. Сопротивления образца при температурах 50 и 100 °C различаются более чем в 6 раз. При охлаждении

температура скачка сдвинулась в более холодную область, что указывает на типичный гистерезисный характер перехода.

Рис. 5. Зависимость сопротивления образца VO_x на кремниевой пластине при различных температурах окружающей среды: 1 – при нагреве, 2 – при охлаждении.

При нагревании температура фазового перехода равняется 69 °C, что для VO₂ хорошо совпадает с литературными значениями [1], однако из-за малого количества этого оксида в композиционном материале скачок сопротивления невелик. Предварительные эксперименты по отжигу выращенных образцов в восстановительной среде водорода показали возможность значительного увеличения количества фазы VO₂ и увеличения скачка сопротивления до 4 порядков, но это тема последующих работ.

Заключение

Методом MOCVD были синтезированы покрытия оксидов ванадия с различной стехиометрией. Показано, что все синтезированные плёнки состоят из четырёх оксидов (V_3O_5 , VO_2 , V_6O_{13} , V_2O_5) с разным их соотношением в получаемой аморфной пленке. Продемонстрировано, что изменения температуры осаждения и потока источника ванадия позволяют менять

оксидный состав материале. Полученные осаждаемом покрытия В демонстрируют структурный фазовый переход при температуре 69 °С, восстановительной однако без дополнительного отжига В атмосфере перепад электрического сопротивления не превышал одного порядка. Оценка состава получаемых покрытий позволяет заключить, что из изопропоксида ванадила в инертной атмосфере образуются в основном высшие оксиды V₂O₅ и V_6O_{13} , а для увеличения содержания VO_2 требуется в зону реакции вводить дополнительный восстановитель.

Финансирование: Работа выполнена в рамках государственного задания ФИРЭ им. В.А. Котельникова РАН (№ 075-01110-23-01).

Литература

- 1. Lee S. et al. Epitaxial stabilization and phase instability of VO2 polymorphs //Scientific reports. – 2016. – T. 6. – №. 1. – C. 19621.
- Huotari J. et al. Synthesis of nanostructured solid-state phases of V7O16 and V2O5 compounds for ppb-level detection of ammonia //Journal of Alloys and Compounds. – 2016. – T. 675. – C. 433-440.
- Perminov V. V. et al. Synchronization in the system of coupled oscillators based on VO2 switches //Journal of Physics: Conference Series. – IOP Publishing, 2017. – T. 929. – №. 1. – C. 012045.
- 4. Кастро Р. А. и др. Эллипсометрия нанокристаллических пленок VO _2, VO _2: Mg, VO _2: Ge //Физика твердого тела. – 2021. – Т. 63. – №. 12. – С. 2210-2216.
- 5. Huitema L. et al. Highly integrated VO2-based tunable antenna for millimeter-wave applications //Applied Physics Letters. 2017. T. 110. №. 20.
- 6. Givernaud J. et al. Microwave power limiting devices based on the semiconductor– metal transition in vanadium–dioxide thin films //IEEE Transactions on Microwave Theory and Techniques. – 2010. – T. 58. – №. 9. – C. 2352-2361.
- Liu H., Lu J., Wang X. R. Metamaterials based on the phase transition of VO2 //Nanotechnology. 2017. T. 29. №. 2. C. 024002.

- Kumi-Barimah E., Anagnostou D. E., Jose G. Phase changeable vanadium dioxide (VO2) thin films grown from vanadium pentoxide (V2O5) using femtosecond pulsed laser deposition //AIP Advances. – 2020. – T. 10. – №. 6.
- 9. Binetti A. et al. Epitaxial growth of V2O3 thin films on Si (1 1 1) by molecular beam epitaxy //Results in Physics. 2023. T. 49. C. 106480.
- Zhang H. et al. Microstructure of epitaxial VO2 thin films deposited on (1120) sapphire by MOCVD //Journal of materials research. 1994. T. 9. №. 9. C. 2264-2271.
- Rajeswaran B., Umarji A. M. Defect engineering of VO2 thin films synthesized by Chemical Vapor Deposition //Materials Chemistry and Physics. – 2020. – T. 245. – C. 122230.
- Vijay V. S. et al. Highly crystalline V2O5 and V6O13 thin films by PLD and a study on morphology transition of V2O5 by post annealing //Vacuum. 2021. T. 187. C. 110097.
- Li L. et al. A general and simple method to synthesize well-crystallized nanostructured vanadium oxides for high performance Li-ion batteries //Journal of materials chemistry A. – 2015. – T. 3. – №. 18. – C. 9385-9389.
- 14. Okimura K., Sakai J., Ramanathan S. In situ x-ray diffraction studies on epitaxial VO2 films grown on c-Al2O3 during thermally induced insulator-metal transition //Journal of Applied Physics. 2010. T. 107. №. 6.
- Zhang C. et al. Characterization of vanadium oxide thin films with different stoichiometry using Raman spectroscopy //Thin Solid Films. – 2016. – T. 620. – C. 64-69.
- Nguen T. D. et al. Influence of annealing on structure, phase and electrophysical properties of vanadium oxide films //Doklady BGUIR. 2021. T. 19. №. 3. C. 22-30.

Для цитирования:

Судас Д.П., Житов В.А., Захаров Л.Ю., Лузанов В.А., Кузнецов П.И. Получение тонкоплёночных покрытий оксидов ванадия методом парофазного химического осаждения из изопропоксида ванадила. // Журнал радиоэлектроники. – 2024. – №. 11. https://doi.org/10.30898/1684-1719.2024.11.7