Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹11
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.11.10
MAGNETO-OPTICAL FARADAY EFFECT
IN BiY2Fe5O12 NANOSCALE FILMS
ON AG AND GG SUBSTRATES
M.S. Artemyev1, Yu.P. Sukhorukov1, A.V. Telegin1, S.V. Naumov1,
S.S. Dubinin1, A.P. Nosov1,2
1M.N. Mikheev Institute of Metal Physics, Ural Branch of the RAS
620108, Russia, Yekaterinburg, S. Kovalevskaya str., 182M.V. Lomonosov Moscow State University,
119991, Russia, Moscow Leninskie Gory, 1
The paper was received March 28, 2025.
Abstract. In this study, we investigated the features of Faraday rotation of light in the visible region of the spectrum in thin-film structures based on BiY2Fe5O12 with a thickness ranging from 5 to 55 nm. Bi-doped yttrium-iron- garnet films obtained by magnetron sputtering on single-crystal substrates of yttrium-aluminum (Y3Al5O12) and gadolinium-gallium garnet (Gd3Ga5O12) demonstrate magneto-optical quality comparable to that of bulk BiY2Fe5O12 samples. It was established that for the studied nanostructures, the contribution of the substrates to the spectral and field dependences of the Faraday effect is decisive. The determination of the magneto-optical parameters and the Verde constant of the substrates allowed us to identify the contribution of the substrate and study the features of the Faraday effect for magnetic films with a thickness less than or equal to the thickness of the relaxation layer at the film/substrate interface. It is noted that in BiY2Fe5O12 films with a thickness less than the thickness of the magnetically dead layer (about 5 nm), the Faraday effect is absent. At the same time, in films with a thickness greater than 25 nm, the specific Faraday rotation is about 25 deg/(μm × T) at room temperature, which is comparable to the data for thick yttriu-iron- garnet films obtained, for example, by the standard method of liquid-phase epitaxy.
Keywords: Faraday effect, yttrium iron-garnet, Verde constant, thin films, critical thickness, magnetically dead layer, interface phenomena.
Funding: The work was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the IMP UB RAS
Corresponding author: Artemyev Mikhail Sergeevich, mihailifmuroran@mail.ru
References
1. A.K. Zvezdin, V.A. Kotov. Moden magnetooptics and magnetooptical materials. Edit by J.M.D. Coey and D.R. Tilley in Institute of Physics Publishing: Bristol, Philadelphia, USA, 1997, p.381. https://doi.org/10.1887/075030362X.
2. Stadler B. J. H., Mizumoto T. Integrated magneto-optical materials and isolators: a review //IEEE Photonics Journal. – 2013. – Ò. 6. – ¹. 1. – Ñ. 1-15. https://doi.org/10.1109/JPHOT.2013.2293618.
3. Kharratian S., Urey H., Onbaşlı M. C. Advanced materials and device architectures for magnetooptical spatial light modulators //Advanced Optical Materials. – 2020. – Ò. 8. – ¹. 1. – Ñ. 1901381. https://doi.org/10.1002/adom.201901381.
4. Alisafaee H., Ghanaatshoar M. Optimization of all-garnet magneto-optical magnetic field sensors with genetic algorithm //Applied optics. – 2012. – Ò. 51. – ¹. 21. – Ñ. 5144-5148. https://doi.org/10.1364/AO.51.005144.
5. Tan C. Z., Arndt J. Faraday effect in silica glasses //Physica B: Condensed Matter. – 1997. – Ò. 233. – ¹. 1. – Ñ. 1-7. https://doi.org/10.1016/s0921-4526(97)80001-t.
6. Qiu J., Hirao K. The Faraday effect in diamagnetic glasses //Journal of materials research. – 1998. – Ò. 13. – ¹. 5. – Ñ. 1358-1362. https://doi.org/10.1557/JMR.1998.0192.
7. Munin E., Roversi J. A., Villaverde A. B. Faraday effect and energy gap in optical materials //Journal of Physics D: Applied Physics. – 1992. – Ò. 25. – ¹. 11. – Ñ. 1635. https://doi.org/10.1088/0022-3727/25/11/011.
8. Starobor A. V. et al. Magnetoactive media for cryogenic Faraday isolators //Journal of the Optical Society of America B. – 2011. – Ò. 28. – ¹. 6. – Ñ. 1409-1415. https://doi.org/10.1364/JOSAB.28.001409.
9. Zvezdin S. V. et al. Anomalous field dependence of the Faraday effect in paramagnetic Gd3Ga5O12 at 4.2 K //JETP lett. – 1983. – Ò. 37. – ¹. 7.
10. Novotný P., Křižánková M., Boháček P. Investigation of Gd3Ga5O12 by Micropolarimetry //Journal of Analytical Sciences, Methods and Instrumentation. – 2013. – Ò. 3. – ¹. 1. – Ñ. 13-16. http://doi.org/10.4236/jasmi.2013.31003.
11. Van der Merwe J. H., Francomber M. H., Sato H. Lattice mismatch and bond strength at the interface between oriented films and substrates //Single-crystal Films. – 1964. – Ñ. Ñ. 172.
12. Suturin S. M. et al. Role of gallium diffusion in the formation of a magnetically dead layer at the Y3Fe5O12/Gd3Ga5O12 epitaxial interface //Physical Review Materials. – 2018. – Ò. 2. – ¹. 10. – Ñ. 104404. https://doi.org/10.1103/PhysRevMaterials.2.104404.
13. Berzhansky V. et al. Magneto-optics of nanoscale Bi: YIG films //Applied optics. – 2013. – Ò. 52. – ¹. 26. – Ñ. 6599-6606. http://doi.org/10.1364/AO.52.006599.
14. Veis M. et al. Polar and longitudinal magneto-optical spectroscopy of bismuth substituted yttrium iron garnet films grown by pulsed laser deposition //Thin Solid Films. – 2011. – Ò. 519. – ¹. 22. – Ñ. 8041-8046. https://doi.org/10.1016/j.tsf.2011.06.007.
15. Han Z. et al. Investigation on the growth and properties of six garnet single crystals with large lattice constants //Crystal Research and Technology. – 2021. – Ò. 56. – ¹. 5. – Ñ. 2000221. https://doi.org/10.1002/crat.202000221.
16. Euler F., Bruce J. A. Oxygen coordinates of compounds with garnet structure //Acta Crystallographica. – 1965. – Ò. 19. – ¹. 6. – Ñ. 971-978. https://doi.org/10.1107/S0365110X65004747.
17. F.F. Sizov, Yu.I. Ukhanov. Magneto-optical Faraday and Voigt effects as applied to semiconductors. Kiev: Naukova Dumka, 1979 [in Russian only].
18. Jesenska E. et al. Optical and magneto-optical properties of Bi substituted yttrium iron garnets prepared by metal organic decomposition //Optical Materials Express. – 2016. – Ò. 6. – ¹. 6. – Ñ. 1986-1997. https://doi.org/10.1364/OME.6.001986.
19. Iori F. et al. Bismuth iron garnet: Ab initio study of electronic properties //Physical Review B. – 2019. – Ò. 100. – ¹. 24. – Ñ. 245150. https://doi.org/10.1103/PhysRevB.100.245150.
20. Kahl S., Popov V., Grishin A. M. Optical transmission and Faraday rotation spectra of a bismuth iron garnet film //Journal of applied physics. – 2003. – Ò. 94. – ¹. 9. – Ñ. 5688-5694. https://doi.org/10.1063/1.1618935.
21. Hasanpour A. et al. Preparation and magneto-optical properties of BiY2Fe5O12 organic nanocomposite films //Journal of Magnetism and magnetic Materials. – 2007. – Ò. 317. – ¹. 1-2. – Ñ. 41-45. https://doi.org/10.1016/j.jmmm.2007.04.016.
22. Deb M. et al. Magneto-optical Faraday spectroscopy of completely bismuth-substituted Bi3Fe5O12 garnet thin films //Journal of Physics D: Applied Physics. – 2012. – Ò. 45. – ¹. 45. – Ñ. 455001. https://doi.org/10.1088/0022-3727/45/45/455001.
23. Wittekoek S. et al. Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2-5.2 eV //Physical review B. – 1975. – Ò. 12. – ¹. 7. – Ñ. 2777. https://doi.org/10.1103/physrevb.12.2777EP.
24. Hansen P., Krumme J. P. Magnetic and magneto-optical properties of garnet films //Thin solid films. – 1984. – Ò. 114. – ¹. 1-2. – Ñ. 69-107. http://doi.org/10.1016/0040-6090(84)90337-7.
25. Rubinstein C. B., Van Uitert L. G., Grodkiewicz W. H. Magneto‐optical properties of rare earth (III) aluminum garnets //Journal of Applied Physics. – 1964. – Ò. 35. – ¹. 10. – Ñ. 3069-3070. http://doi.org/10.1063/1.1713182.
26. Casals B. et al. Untangling the contributions of cerium and iron to the magnetism of Ce-doped yttrium iron garnet //Applied Physics Letters. – 2016. – Ò. 108. – ¹. 10. https://doi.org/10.1063/1.4943515.
27. Krichevtsov B. B. et al. Substrate induced magnetic anisotropies and magneto-optical response in YIG nanosized epitaxial films on NdGG (111) //arXiv preprint arXiv:1901.10800. – 2018. https://doi.org/10.48550/arXiv.1901.10800.
For citation:
Artemyev M.S., Sukhorukov Yu.P., Telegin A.V., Naumov S.V., Dubinin S.S., Nosov A.P. Magneto-optical Faraday effect in nanoscale structures based on BiY2Fe5O12 obtained by magnetron sputtering. // Journal of Radio Electronics. – 2025. – ¹. 11. https://doi.org/10.30898/1684-1719.2025.11.10 (In Russian)