Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹11

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.11.11

17th International Conference

Gas Discharge Plasmas and Their Applications

Ekaterinburg, Russia, 8-12 September 2025

 

 

 

VARIATION OF THE TRANSIENT PROCESS OF RELATIVISTIC
K
a-BAND BWO IN THE NON-STATIONARY GENERATION MODE

 

M.I. Yalandin1,2, V.V. Rostov3

 

1Institute of Electrophysics, UB RAS
620016, Russia, Yekaterinburg, Amundsen str., 106

2P.N. Lebedev Physical Institute, RAS
119991, Russia, Moscow, Leninskii Ave., 53

3Institute of High Current Electronics, SB RAS
634055, Russia, Tomsk, Akademicheskii Ave., 2/3

 

The paper was received October 2, 2025.

 

Abstract. A brief review of studies and new results on variation of the transient process duration of a non-stationary relativistic Ka-band backward-wave oscillator are presented. The variation is realized by changing the electron current, the beam coupling with the synchronous harmonic of the excited wave TM01, or a seed signal intensity determined by steepness of the beam front. In the first two cases, not only the leading radiation peak shifts, but also its power changes significantly, and in the second case, the carrier frequency also varies. The approaches noted were demonstrated experimentally or in modeling using particle-in-cell method. A numerical experiment showed that, with a constant current front steepness, the transient process duration can be controlled by variation the transverse velocities of the electrons of the magnetized beam, at which the amplitude and time of occurrence of the seed signal change, but the microwave power remains constant.

Key words: coaxial diode, high-current beam, backward-wave jscillator, magnetic field, transverse velocities, transient process.

Financing: The research was funded by the Russian Science Foundation (project No. 24-19-00407, https://rscf.ru/project/24-19-00407/).

Corresponding author: Yalandin Mikhail Ivanovich, yalandin@iep.uran.ru

 

References

1. Bugaev S.P., Il’in V.P., Koshelev V.I., et al. Formation of intense relativistic electron beams for high power microwave oscillators and amplifiers // In: Relativistic high-frequency electronics. Vypusk 1. Gorky: IPF AN SSSR. – 1979. - P. 5-75 (In Russian).

2. Mesyats G.A., Explosive Electron Emission (Yekaterinburg: URO-Press. - 1998). 

3. Mesyats G.A. Pulse accelerators for relativistic microwave electronics // In: Relativistic high-frequency electronics. Vypusk 4. Gorky: IPF AN SSSR. – 1984. - P. 193-216 (In Russian).

4. Kovalev N.F., Petelin M.I., Raizer M.D., et al. Generation of Powerful Pulses of Electromagnetic Radiation by a Flow of Relativistic Electrons // Pis’ma v ZhETF. – 1973. - V. 18. - ¹4. P. 232-235 (In Russian).

5. Ginzburg N.S., Kuznetsov S.P., Fedoseeva T.N. Theory of transit processes in relativistic BWO. Izv. Vuzov. Radiofizika.-1978, V. 21.- No. 7.- P. 1037-1052 (In Russian).

6. Benford J., Swegle J. A., Schamiloglu E. High Power Microwaves, 3rd ed. (New York: CRC Press. - 2016).

7. Korovin S.D., Eltchaninov A.A., Rostov V.V., et al. Generation of Cherenkov superradiance pulses with a peak power exceding the power of the driving short electron beam // Phys. Rev. E. – 2006. - V. 74. - No.1. – Art. no. 016501.

8. Rostov V.V., Romanchenko I.V., Pedos M.S., et al. Superradiant Ka-band Cherenkov oscillator with 2-GW peak power // Phys. Plasmas. – 2016. - V. 23. - No. 9. – Art. no. 093103.

9. Bunkin B. V., Gaponov-Grekhov A. V., Elchaninov A. S., et al. Radar based on a microwave generator with a relativistic electron beam // Pis’ma v ZhTF. – 1992. - V. 18. - No. 9. - P. 61-64 (In Russian).

10. Betsky O.V., Golant M.B., Devyatkov N.D. Millimeter waves in biology. (Moscow: Znanie – 1987).

11. Bratman V. L., Denisov G. G., Kolganov N. G., et al. Microwave source of multigigawatt peak power based on a relativistic backward-wave oscillator and a compressor // Tech. Phys. – 2011. – V. 56. – No. 2. – P. 269–273.

12. Yalandin M.I., Reutova A.G., Ul’maskulov M.R., et al. Effect of the nonlinear compression of ultrashort microwave pulses in the process of the amplification by quasistationary electron beams // JETP Lett. – 2010. – V. 91. – No. 11. – P. 553-557.

13. Reutova A.G., Ul’maskulov M.R., Sharypov Ê.A., et al. Experimental observation of superradiance in the stimulated scattering of an intense microwave pump wave by a counterpropagating subnanosecond high-current relativistic electron bunch // JETP Lett. – 2005. – V. 82. – No. 5. - P. 263–266.

14. Ginzburg N.S., Fedotov A.E., Kuzikov S.V., et al. Demonstration of High-gradient Electron Acceleration Driven by Subnanosecond Pulses of Ka-band Superradiance // Phys. Rev. Acceler. Beams. – 2023. - V. 26. - No. 6. - Art. no. 060401.

15. El’chaninov A.A., Klimov A.I., Koval’chuk O.B., et al. Coherent Summation of Power of Nanosecond Relativistic Microwave Generators // Tech. Phys. – 2011. - V. 56. - No. 1. - P. 121–126.

16. Ginzburg N.S., Cross A.W., Golovanov A.A., et al., Generation of Electromagnetic Fields of Extremely High Intensity by Coherent Summation of Cherenkov Superradiance Pulses // Phys. Rev. Lett. – 2015. - V. 115. – No. 11. – Art. no. 114802.

17. Mesyats G.A., Ginzburg N.S., Golovanov A.A., et al., Phase-Imposing Initiation of Cherenkov Superradiance Emission by an Ultra-Short Seed Microwave Pulse // Phys. Rev. Lett. -  2017. - V. 118. – No. 26. – Art. no. 264801.

18. Tarakanov V.P. Code KARAT in simulations of power microwave sources including Cherenkov plasma devices, vircators, orotron, E-field sensor, calorimeter etc. // EPJ Web Conf. – 2017. - V. 149. – Art. no. 04024.

19. Denisov G.G., Lukovnikov D.A., Samsonov S.V. Resonant reflectors for free electron masers // Int. J. Infrared and Millimeter Waves. - 1995. - V. 16. – No. 4. - P. 745-752.

20. Kurkan I.K., Rostov V.V., Tot'meninov E.M. A possible method of reducing the magnetic field in a relativistic backward-wave tube // Tech. Phys. Lett. – 1998. – V. 24. – No. 5. - P.388-389.

21. Korovin S.D., Mesyats G.A., Rostov V.V., et al. High-efficiency subnanosecond microwave pulse generation in a relativistic backward wave tube // Tech. Phys. Lett. – 2002. - V. 28. No. 1. - P. 76–79.

22. Abubakirov E.B., Belousov V.I., Varganov V.N. et al. Experimental implementation of the method of cyclotron resonance mode selection in relativistic electron high-frequency Cherenkov-type generators // Pis’ma v ZhTF. – 1983. - V. 9. - No. 9. - P. 533-536 (in Russian).

23. Boltachev G.Sh., Rostov V.V., Sharypov K.A., et al., Control of the Operation Mode of a Relativistic Êà-Band Backward-Wave Oscillator // IEEE Trans. Plasma Sci. – 2015. - V. 43. - No. 8. - P. 2613 - 2620.

24. Abubakirov E.B., Fuchs M.I., Kolganov L.G. et. al. // Abstr. of III Int. Workshop «Strong Microwaves in plasmas». - N.Novgorod, Russia, 1996, p.S19.

25. Shunailov S.A., Mesyats G.A., Romanchenko I.V., et al., Electromagnetic noise of a nanosecond magnetized high-current electron beam // J. Appl. Phys. – 2019. – V. 126. – No. 16. – Art. no. 164504.

26. Korovin S.D., Mesyats G.A., Rostov V.V., et al. Subnanosecond 1-GW Pulsed 38-GHz Radiation Source // Tech. Phys. Lett. – 2004. - V. 30. - No. 2. - P. 117–119.

27. Sharypov K.A., Shunailov S.A., Ginzburg N.S., et al.  Development of the Concept of High-Power Microwave Oscillators with Phase Locking by an External Signal // Radiophys. Quantum Electr. – 2019. - V. 62. - No. 7–8. - P. 447-454.

28. Artsimovich L.A., Lukyanov S.Yu. Motion of charged particles in electric and magnetic fields (Moscow: Nauka, 1978).

For citation:

Yalandin M.I., Rostov V.V. Variation of the transient process of relativistic Ka-band BWO in the non-stationary generation mode. // Journal of Radio Electronics. – 2025. – ¹. 11. https://doi.org/10.30898/1684-1719.2025.11.11 (In Russian)