Journal of Radio Electronics. eISSN 1684-1719. 2025. №11
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.11.12
Gas Discharge Plasmas and Their Applications
Ekaterinburg, Russia, 8-12 September 2025
MODELING, CALCULATION AND COMPARISON
OF SWITCHING CHARACTERISTICS OF A SELF-TRIGGERED
TWO-ELECTRODE SPARK GAP AND A FIELD-DISTORTION
THREE-ELECTRODE GAPS
G.N. Kurapov, A.A. Bukharkin, M.V. Zhuravlev,
P. Glumac, E.A. Kurapova, G.E. Remnev
National Research Tomsk Polytechnic University,
634050, Russia, Tomsk, Lenina ave., 30
The paper was received October2, 2025.
Abstract. The article discusses the design features of a three-electrode spark gap with field distortion based on the results of an iterative calculation of the configuration and the results of a study of its time characteristics in comparison with a two-electrode spark gap and a three-electrode spark gap without calculating and equalizing the electric field in the spark gap. The design of the gap provides alternating breakdown of gaps under conditions of overvoltage and a sharp inhomogeneous electric field strength determined by the special shape of the electrodes. The spark gap is part of an experimental stand under development for the generation of neutron beams by powerful pulsed accelerators of charged particles. Taking into account the continuous operation of the accelerator about 106 repetitions, the problem of ensuring the required erosion resistance of the commutator electrodes and the stability of discharge formation without deterioration of switching characteristics is acute. Despite many years of research, no universal solution to these problems has been found. Based on the above, it became necessary to carry out this work related to the development of such gaps. The switching voltage was in the range of 147.5 - 304.5 kV with a maximum switching current of up to 87 kA. It is shown that the introduction of a distorting electrode into the spark gap during the configuration of the electric field reduces the breakdown voltage slightly (7.3-12.8%). The jitter of the response time relative to the start time of the charging pulse has been determined. The spark gap ensured the formation of a branched structure of the spark channel, which reduced electrode erosion, switching time, and voltage drop across the spark gap.
Key words: three-electrode spark gap, spark gap with field distortion, spark gap in high-pressure gas, discharge delay time, multi-channel discharge, field heterogeneity, breakdown voltage
Financing: The research was supported by a grant from the Russian Science Foundation (project No. 23-19-00614)
Corresponding author: Kurapov Grigoriy Nikolaevich, kurepov@tpu.ru
References
1. Mesyats G. A. Repetitively pulsed high-current accelerators with transformer charging of forming lines / G. A. Mesyats, S. D. Korovin, A. V. Gunin [et al.] // Laser and Particle Beams. – 2003. – Vol. 21, No. 2. – P.197-209. – https://doi.org/10.1017/S0263034603212076
2. Rostov V. V. High-Current Pulsed-Repetitive Electron Accelerator "Sinus-320": Formation and Diagnostics of a Wide-Aperture Beam / V. V. Rostov, V. V. Barmin, V. F. Landl [et al.] // Russian Physics Journal. – 2019. – Vol. 62, No. 7. – P.1253-1259. – https://doi.org/10.1007/s11182-019-01842-5
3. Meek J. M. Electrical Breakdown of Gases / J. M. Meek, J. D. Craggs / / Oxford: Clarendon Press, 1953. – 542c.
4. Козлов, Б. А. Времена срабатывания искровых разрядников-обострителей при давлениях до 140 атмосфер [Response times of spark arresters at pressures up to 140 atmospheres] / Б. А. Козлов, Д. С. Маханько // Вестник Рязанского государственного радиотехнического университета. – 2023. – № 84. – С.234-245. – https://doi 10.21667/1995-4565-2023-84-234-245
5. Bykov N. M. Operating features of a high-voltage spark gap switch with gas blow normal to the breakdown path in a repetitively pulsed mode / N. M. Bykov, A. V. Gunin, S. D. Korovin, Yu. D. Korolev // Instruments and Experimental Techniques. – 2008. – Vol. 51, No. 6. – P.838-845. – https://doi.org/10.1134/S0020441208060110
6. Ландль Н. В. Стабильность срабатывания двухэлектродных разрядников высокого давления в режиме самопробоя при напряжениях несколько сотен киловольт [Stability of operation of two-electrode high-pressure arresters in self-breakdown mode at voltages of several hundred kilovolts] / Н. В. Ландль, Ю. Д. Королев, В. В. Ростов // Proceedings of 9th International Congress on Energy Fluxes and Radiation Effects (EFRE–2024) / Tomsk, Russia. 2024. С.406 – 411.
7. Воробьев Г. А. Техника формирования высоковольтных наносекундных импульсов [Forming of high-voltage nanosecond pulses] / Г. А.Воробьев, Г. А. Месяц // М., Госатомиздат, 1963.
8. Kharlov V. A. Arc Motion and Electrode Erosion in High-Current Rail Spark Gaps / A. V. Kharlov // IEEE Transactions on Plasma Science. – 2010. – Vol. 38, No. 9. P.2474-2478. – https://doi.org/10.1109/TPS.2010.2052929
9. Engel T. G. Review of the mechanisms of electrode and insulator erosion and degradation in high current arc environments / T. G. Engel, S. L. Wester, M. Kristiansen and A. L. Donaldson // IEEE Transactions on Magnetics. –1995. – Vol. 31, No. 1. – P.709 – 713. – https://doi.org/10.1109/20.364606
10. Месяц Г. А. Генерирование мощных наносекундных импульсов [Generation of powerful nanosecond pulses] / Месяц Г. А. – М.: Советское радио, 1974. – 256с.
11. Martin J. C. Multichannel gaps. Aldermaston, Berks, 1970, SSWA(JCM).
12. Bell W. R Tarantula—100 kV pinch discharge apparatus for studying shock waves / W .R. Bell, A. E. Bishop, H. J. Crawley, G. D. Edmonds [et al.] // Proceedings of the Institution of Electrical Engineers Volume 113, Issue 12. – https://doi.org/10.1049/piee.1966.0365
13. Ковальчук Б.М. Сильноточные наносекундные коммутаторы [High-current nanosecond switches] / Б. М. Ковальчук, В. В. Кремнев, Ю. Ф. Поталицын. – Новосибирск: Наука, 1979. – 175 с.
14. Bluhm H. Pulsed Power Systems: Principles and Applications / H. Bluhm / Springer. – 2006. – https://doi.org/10.1007/3-540-34662-7
15. Маханько Д. С. Электрическая прочность конструкции неуправляемого разрядника-обострителя на напряжение до 500 кВ [Electrical structural strength of an uncontrolled surge arrester at a voltage of up to 500 kV] / Д. С. Маханько // Вестник Рязанского Государственного Радтотехнического Университета. – 2021. – №78. – С.188-197. – https://DOI 10.21667/1995-4565-2021-78-188-197
16. Гохберг Б. М. Элегаз — электрическая газовая изоляция [Elegaz — electric gas insulation] / Б. М. Гохберг // «Электричество». – Москва: Госэнергоиздат. – 1947. – №3. – С.15.
For citation:
Kurapov G.N., Bukharkin A.A., Zhuravlev M.V., Glumac P., Kurapova E.A., Remnev G.E. Modeling, calculation and comparison of switching characteristics of a self-triggered two-electrode spark gap and a field-distortion three-electrode gaps. // Journal of Radio Electronics. – 2025. – №. 11. https://doi.org/10.30898/1684-1719.2025.11.12 (In Russian)