Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹11
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.11.13
Gas Discharge Plasmas and Their Applications
Ekaterinburg, Russia, 8-12 September 2025
Modeling of a Self-Sustained
High-Voltage Glow Discharge in a Source
with a Grid Plasma Cathode
T.V. Koval, R.A. Kartavtsov, M.S. Vorobyov,
N.N. Koval, S.Y. Doroshkevich, A.A. Grishkov
Institute of High Current Electronics, SB RAS
634055, Russia, Tomsk, Akademichesky Ave. 2/3
The paper was received October 2, 2025.
Abstract. The operating mode of the "SOLO" electron source with a grid plasma emitter is numerically analyzed, in which the ion flow from the accelerating gap, created not only by ionization of the working gas, but also by melting, evaporation and ionization of the vapors of the collector material, determines the nature of the current flow in the accelerating gap after switching off the auxiliary arc discharge current. This mode initiates the ignition and maintenance of a high-voltage glow discharge, fed from a single high-voltage DC source with an amplitude of up to 15 kV, and provides relaxation beam current pulses of several hundred amperes with a duration of tens of microseconds over a total duration of up to one millisecond. The paper presents the results of numerical modeling, which reflect the main regularities of the implemented oscillatory mode of electron beam generation, associated with the entry of this additional flow of accelerated ions into the grid plasma emitter, from where electrons are extracted into a high-voltage glow discharge, facilitating its self-sustaining.
Key words: high-voltage glow discharge, electron beam, plasma cathode, beam current oscillations, electron source.
Financing: The study was supported by the Russian Science Foundation grant No. 25-19-00745, https://rscf.ru/project/25-19-00745/
Corresponding author: Koval Tamara Vasilievna, tvkoval@mail.ru
References
1. Koval' N.N., Oks E.M., Protasov YU.S., Semashko N.N., Ehmissionnaya ehlektronika (MGTU im N. EH. Baumana, Moskva, 2009), s. 595. (in Russian).
2. Burdovitsin V.A., Klimov A.S., Medovnik A.V. i dr. Forvakuumnye plazmennye istochniki ehlektronov // Tomsk: Izd-vo Tomskogo Universiteta. – 2014. – 288 s. (in Russian).
3. Gushenets V.I., Koval' N.N., Shchanin P.M. Generatsiya sil'notochnykh ehlektronnykh puchkov nanosekundnoi dlitel'nosti s vysokoi chastotoi povtoreniya impul'sov // Pis'ma v ZHTF. – 1990. – T. 16. – ¹8. – S. 12. (in Russian).
4. Vorobyov M. S., Koval N. N., Sulakshin S. A. An electron source with a multiaperture plasma emitter and beam extraction into the atmosphere //Instruments and Experimental Techniques. – 2015. – V. 58. – ¹. 5. – P. 687-695. https://doi.org/10.1134/S0020441215040132.
5. Vorobyov M. S. et al. Dynamic power control of a submillisecond pulsed megawatt electron beam in a source with a plasma cathode //Technical Physics Letters. – 2021. – V. 47. – ¹. 7. – P. 528-531. https://doi.org/10.1134/S1063785021050291.
6. Devyatkov V. N. et al. Electron source with a multi-arc plasma cathode for generating a modulated beam of submillisecond duration //Pisma v Zhurnal Tekhnicheskoi Fiziki. – 2024. – V. 50. – ¹. 19. – P. 25-28.
https://doi.org/10.61011/TPL.2024.10.59688.19995.7. Gushenets V.I., Bugaev A.S., Oks E.M. Konstruktsiya i rabochie kharakteristiki ehlektronnogo istochnika s polym katodom i nesamostoyatel'nym vysokovol'tnym tleyushchim razryadom // Proceedings of 8th International Congress on Energy Fluxes and Radiation Effects. – 2022. – P. 746-751. https://doi.org/10.56761/EFRE2022.C1-P-001601 (in Russian).
8. Kartavtsov R.A. i dr. Sil'notochnyi vysokovol'tnyi tleyushchii razryad s ehlektrodugovym setochnym plazmennym katodom // PZHTF. Prinyata v pechat'.
9. Metel' A.S., Grigor'ev S. N. Tleyushchii razryad s ehlektrostaticheskim uderzhaniem ehlektronov: fizika, tekhnika, primeneniya. – 2005. (in Russian).
10. Korolev Y. D. et al. High-current stages in a low-pressure glow discharge with hollow cathode //IEEE Transactions on Plasma Science. – 2013. – V. 41. – ¹. 8. – P. 2087-2096. https://doi.org/10.1109/TPS.2013.2266675.
11. Nikulin S. P. Influence of the emission of charged particles on the characteristics of glow discharges with oscillating electrons //Russian physics journal. – 2001. – V. 44. – ¹. 9. – P. 969-976.
12. Nguyen Bao Hung, T.V. Koval, Tran My Kim An / Mathematical modeling of discharge plasma generation and diffusion saturation of metals and alloys [Electronic resource] /Atlantis Press: Advances in Computer Science Research, Information technologies in science, management, social sphere and medicine, 2016. https://doi.org/10.2991/itsmssm-16.2016.93.
13. Devyatkov V.N. et al. Generation and propagation of high-current low-energy electron beams //Laser and Particle Beams. – 2003. – V. 21. – ¹. 2. – P. 243-248. https://doi.org/10.1017/S026303460321212X.
14. Moskvin P. V. et al. Dynamics of electron extraction from a grid plasma cathode based on a low-pressure arc discharge //Pisma v Zhurnal Tekhnicheskoi Fiziki. – 2023. – V. 49. – ¹. 11. – P. 43-46.
https://doi.org/10.61011/TPL.2023.06.56376.19557
15. Vorobyov M.S. et al. Spatiotemporal dynamics of a low-pressure arc and a generated beam in an electron source with a grid plasma emitter // High Temperature. 2022. – V.60. – ¹ 4. P. 438-445. https://doi.org/10.31857/S0040364422040160.
16. Bleykher G. A. et al. Energy and substance transfer in magnetron sputtering systems with liquid-phase target //Vacuum. – 2016. – V. 124. – P. 11-17. https://doi.org/10.1016/j.vacuum.2015.11.009.
For citation:
Koval T.V., Kartavtsov R.A., Vorobyov M.S., Koval N.N., Doroshkevich S.Y., Grishkov A.A. Modeling of a self-sustained high-voltage glow discharge in a source with a grid plasma cathode. // Journal of Radio Electronics. – 2025. – ¹. 11. https://doi.org/10.30898/1684-1719.2025.11.13 (In Russian)