Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹11
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.11.14
Gas Discharge Plasmas and Their Applications
Ekaterinburg, Russia, 8-12 September 2025
A 3 MeV, 40 GW Picosecond
Electron Accelerator
V.E. Patrakov, L.N. Lobanov, M.S. Pedos, S.N. Rukin,
K.A. Sharypov, S.A. Shunailov, S.P. Timoshenkov, M.I. Yalandin
Institute of Electrophysics, UB RAS,
620016, Russia, Yekaterinburg, Amundsen str., 106
The paper was received October 2, 2025.
Abstract. The paper presents experimental results on obtaining multigigawatt electron beams of picosecond duration using a serially produced sealed-off vacuum diode IMA3-150E with beam extraction into the atmosphere. The feeding pulse was supplied by an S-100 generator based on a solid-state SOS-diode driver and four pulse compression stages employing nonlinear ferrite transmission lines. The peak power of the driving pulse with a duration of ~100 ps reaches 100 GW. The experiment produced a beam with the following parameters: maximum energy of 3.2 MeV, peak current of ~12 kA, and current pulse duration of 85 ps. The peak power of the beam was ~40 GW. The cross-sectional distribution of beam current density, obtained by digitizing the beam autograph on a TsVID dosimetric film, and the angular current density distribution, measured using a collector current sensor, are presented. It was found that the diode lifetime in this mode is limited by intense erosion of cathode foil. Structural elements of the diode are able to withstand the voltage pulse without breakdown, developing electric fields of 5-10 MV/cm.
Key words: picosecond electron accelerator, vacuum diode, ferrite transmission line, picosecond pulse, high-current beam.
Financing: The research was funded by the Russian Science Foundation (project No. 24-19-00407, https://rscf.ru/project/24-19-00407/).
Corresponding author: Patrakov Vitaly Evgenievich, patrakov@iep.uran.ru
References
1. Vaisburd D. I. and Evdokimov K. E. Creation of excitations and defects in insulating materials by high-current-density electron beams of nanosecond pulse duration // Phys. Status Solidi C. – 2005. – V. 2. – No. 1. – P. 216–222.
2. Lushchik A., Lushchik Ch., Schwartz K., et al. Creation and clustering of Frenkel defects at high density of electronic excitations in wide-gap materials // Nucl. Instrum. Methods Phys. Res. B. – 2012. – V. 277. – P. 40–44.
3. Komyak N. I., Morgovskij L.Ya., and Peliks E.A. Pulsed X-ray apparatus of the MIRA type (In Russian) // Defektoskopiya. – 1978. – ¹ 3. – P. 108-110.
4. Solomonov V. I., Michailov S. G., Lipchak A. I., et al. CLAVI Pulsed Cathodoluminescence Spectroscope // Laser Physics. – 2006. – V. 16. – No. 1. – P. 126-129.
5. Rostov V. V. and Yalandin M. I. Modeling of a multi-gigawatt Ka-band superradiant source with a slow traveling wave // IEEE Electron device Lett. – 2024. – V. 45. – No. 7. – P. 1329-1332.
6. Morton D., Banister J., Levine J., et al. A 2MV, < 300ps Risetime, 100Hz Pulser for Generation of Microwaves // Proc. of the IEEE Int. Power Modulator and High Voltage Conf. – 23-27 May 2010. – Atlanta, GA. – P. 361-364.
7. Ginzburg N. S., Fedotov A. E., Kuzikov S. V., et al. Demonstration of High-gradient Electron Acceleration Driven by Subnanosecond Pulses of Ka-band Superradiance // Phys. Rev. Accel. Beams. – 2023. – V. 26. – No. 6. – Art. No. 060401.
8. Zheltov K. A. Picosecond High-Current Electron Accelerators (in Russian). (Moscow: Energoatomizdat, 1991).
9. Loiko T. V., Nedoikash Yu. M., Pavlovskaya N. G., et al. A Subnanosecond Pulsed Source of Electrons and X-rays // Instrum. Exp. Tech. – 2000. – V. 43. – No. 4. – P. 514-516.
10. Yuriev A. L., Elyash S. L., Loiko T. V., et al. A High-Current Subnanosecond Electron Accelerator with a Gas-Filled Former // Instrum. Exp. Tech. – 2017. – V. 60. – No. 6. – P. 853-857.
11. Lobanov L. N., Sadykova A. G., Sharypov K. A., et al. Cascade acceleration of an explosive-emission subnanosecond electron beam // Phys. Plasmas. –2025. – V. 32. – No. 3. – Art. no. 033103.
12. Ulmaskulov M. R., Shunailov S. A., Sharypov K. A., and Yalandin M. I. Multistage converter of high-voltage subnanosecond pulses based on nonlinear transmission lines // J. Appl. Phys. – 2019. – V. 126. – No. 8. – Art. no. 084504.
13. Alichkin E. A., Pedos M. S., Ponomarev A. V., et al. Picosecond solid-state generator with a peak power of 50 GW // Rev. Sci. Instrum. – 2020. – V. 91. – No. 10. – Art. no. 104705.
14. Patrakov V. E., Pedos M. S., Ponomarev A. V., et al. A 100 GW, 100 ps solid-state pulsed power system based on semiconductor opening switch generator and magnetic compression lines // Rev. Sci. Instrum. – 2024. – V. 95. – No. 8. – Art. no. 084709.
15. Mesyats G. A., Rukin S. N., Shpak V. G., and Yalandin M. I. // Ultra-Wideband Short-Pulse Electromagnetics 4 (IEEE Cat. No. 98EX112). – 1999. – P. 1-9.
16. Patrakov V. E. and Rukin S. N. Inherent waveguide-like dispersion of ferrite coaxial lines (In Russian) // Proceedings of 9th International Congress on Energy Fluxes and Radiation Effects. – 16-21 Sept. 2024. – Tomsk: TPU Publishing House, 2024. – P. 457-462.
17. Patrakov V. E. Numerical Investigation of Higher Order Propagation Modes in High-Power Magnetic Compression Lines // IEEE Trans. Plasma Sci. – 2025. – V. 53. – No. 7. – P. 1531-1542.
18. Patrakov V. E., Rukin S. N., Shunailov S. A., and Yalandin M. I. Simulation of the Output Stage of Picosecond Multi-Gigawatt Electron Accelerator // Bulletin of the Russian Academy of Sciences: Physics. – 2024. – V. 88. – No. Suppl 4. – P. S538-S545.
19. Pavlovskaya N. G., Kudravtseva T. V., Dron N. A., et al. Compact tube with a cold cathode for obtaining nanosecond pulses of fast electrons // Instrum. Exp. Tech. – 1973. – V. 16. – No. 1. – P. 18-20.
20. Reutova A. G., Sharypov K. A., Shpak V. G., et al. Current probes for picosecond electron beams // Proc. of 15-th Int. Symp. on High Current Electronics. – 2008. – P. 111-114.
21. Yalandin M. I., Lobanov L. N., Osipenko E. A., et al. Picosecond resolution collector sensor for diagnostics of subrelativistic electron bunches // IEEE Trans. Instrum. Measur. – 2023. – V. 72. – Art. no. 1008808.
22. Zdeshchits V.M., Tarasov M.D., and Tsukerman V.A. Time-spectral investigations of air luminescence excited by fast electrons (In Russian) // Zhurnal Tekhnicheskoj Fiziki. – 1989. – V. 59. – No 5. – P. 51–55.
23. Zheltov K.A., Zdanovich I.G., and Nechaev M.N. Dynamics of an electron beam from a high-current picosecond accelerator// Technical Physics. – 1999. – V. 44. – No. 5. – P. 580-583.
24. Baranov V. F. Dosimetry of electron radiation (In Russian) (Moscow: Atomizdat, 1974).
25. Ivey H. F. Space charge and transit time considerations in planar diodes for relativistic velocities // J. Appl. Phys. – 1952. – V. 23. – No. 2. – P. 208-211.
26. Elyash S. L., Loiko T. V., Yuriev A. L., and Seleznev A. A. Detection of Electron Radiation Pulses Generated by a Subnanosecond Accelerator // Instrum. Exp. Tech. – 2019. – V. 62. – No. 4. – P. 528-531.
For citation:
Patrakov V.E., Lobanov L.N., Pedos M.S. Rukin S.N., Sharypov K.A., Shunailov S.A., Timoshenkov S.P., Yalandin M.I. A 3 MeV, 40 GW picosecond electron accelerator. // Journal of Radio Electronics. – 2025. – ¹. 11. https://doi.org/10.30898/1684-1719.2025.11.14 (In Russian)