Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹11

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.11.16

 

 

 

On the modeling of plasma jet dynamics

in laboratory experiments with a pulsed source

 

V.A. Gasilov 1, N.O. Savenko 1, E.M. Urvachev 1,2,

T.V. Loseva 2, A.S. Grushin 1, Yu.V. Poklad 2

 

1 Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences,

125047, Russia, Moscow

2 Sadovsky Institute of Geosphere Dynamics, Russian Academy of Sciences,

119334, Russia, Moscow

 

The paper was received October 2, 2025.

 

Abstract. The results of modeling the processes occurring during the operation of an explosive-type generator are presented, using a hydrodynamic approximation that accounts for the equation of state of explosion products in the form of the Jones-Wilkins-Lee model. Two generator sizes and two working materials–aluminum and lead–were considered. The total injected mass and energy of the resulting plasma formation were determined. Time-dependent profiles of density, velocity, and temperature of the plasma jet were obtained, and a comparison was made with a previously reconstructed injection scenario based on laboratory experiments. It was shown that the temperature of the lead jet exceeds that of the aluminum generator by nearly an order of magnitude. The conclusion was drawn regarding the promise of a multiple injection scenario for modeling astrophysical processes.

Key words: explosive-type generator, JWL equation of state, detonation, injection scenario, laboratory experiment.

Financing: The work by V.A. Gasilov and E.M. Urvachev on modeling plasma dynamics in an explosive-type generator and selecting equations of state was carried out within the framework of RSF Project No. 25-61-00018. The work by T.V. Loseva and Yu.V. Poklad on analyzing experimental data and selecting the working material was conducted as part of the State Assignment No. FMWN-2025-0006.

Corresponding author: Savenko Nikita Olegovich, savenkonkt@gmail.com

 

References

1. Blaunstein N., Plohotniuc E. Ionosphere and applied aspects of radio communication and radar. – CRC press, 2008. https://doi.org/10.1201/9781420055177

2. Grishentsev A. Yu., Korobeinikov A.G. Obratnaya zadacha radiochastotnogo zondirovaniya ionosfery [Inverse problem of radiofrequency sounding of the ionosphere] // Zhurnal radioehlektroniki – 2010. – ¹. 10. – Ñ. 10. (In Russian)

3. Pashintsev V.P. et al. Strukturno-mnogoluchevoi podkhod k razrabotke prostranstvenno-vremennoi modeli odnomodovogo dekametrovogo kanala svyazi s diffuznoi mnogoluchevost'yu [Structural-multipath approach to the development of a space-time model of a single-mode decameter communication channel with diffuse multipath] // Zhurnal radioehlektroniki. – 2022. – ¹. 6. https://doi.org/10.30898/1684-1719.2022.6.3 (In Russian)

4. Galperin I.U.M., Gurevich V.L., Kozub V.I. Thermoelectric effects in superconductors // Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki. – 1974. – Ò. 66. – Ñ. 1387-1397.

5. Sinevich A.A. et al. The Internal structure of a polarization jet/SAID: A stratified polarization jet/SAID // Geomagnetism and Aeronomy. – 2023. – Ò. 63. – ¹. 6. – Ñ. 747-756. https://doi.org/10.1134/S0016793223600583

6. Mishin E.V. The evolving paradigm of the subauroral geospace // Frontiers in Astronomy and Space Sciences. – 2023. – Ò. 10. – id. 1118758. https://doi.org/10.3389/fspas.2023.1118758

7. Sinevich A.A. et al. The Polarization Jet/SAID and Plasma Irregularities of Different Scales // Bulletin of the Russian Academy of Sciences: Physics. – 2024. – Ò. 88. – ¹. 3. – Ñ. 375-380. https://doi.org/10.1134/S1062873823705548

8. Erlandson R.E. et al. The APEX North Star experiment: observations of high-speed plasma jets injected perpendicular to the magnetic field // Advances in Space Research. – 2002. – Ò. 29. – ¹. 9. – Ñ. 1317-1326. https://doi.org/10.1016/S0273-1177(02)00183-7

9. Zetser J.I., Poklad Y.V., Erlandson R.E. Active Experiments in the Ionosphere at Altitudes of 140–360 km. Optical Observations Results Reanalysis // Izvestiya, Physics of the Solid Earth. – 2021. – Ò. 57. – ¹. 5. – Ñ. 745-760. https://doi.org/10.1134/S1069351321050219

10. Loseva T.V. et al. Kharakteristiki plazmennoi strui vzryvnogo generatora v ehksperimentakh «Flaksus»: izmereniya i chislennoe modelirovanie [Characteristics of the plasma jet of the explosive generator in the Fluxus experiments: measurements and numerical modeling] // Dinamicheskie protsessy v geosferakh. – 2021. – ¹. 13. – Ñ. 175-186. https://doi.org/10.26006/22228535_2021_1_175 (In Russian)

11. Losseva T.V. et al. Numerical Simulations of the First Stage of Dynamics of a High-Speed Plasma Jet in Fluxus and North Star Active Geophysical Rocket Experiments // Plasma Physics Reports. – 2022. – Ò. 48. – ¹. 10. – Ñ. 1106-1110. https://doi.org/10.1134/S1063780X2260058X

12. Kiselev Y.N. et al. Investigation of high-speed air jets of an explosive plasma generator // Journal of Applied Mechanics and Technical Physics. – 1986. – Ò. 27. – ¹. 4. – Ñ. 492-495. https://doi.org/10.1007/BF00910188

13. Kiselev Yu.N., Poklad Yu.V., Ronedestvenskii V.B., Khristoforov B.D., Yur'ev V.L. Vzryvnye istochniki vysokoskorostnoi plazmy i UF-izlucheniya [Explosive sources of high-speed plasma and UV radiation]. 2-i Vsesoyuznyi simpozium po radiatsionnoi plazmodinamike. Tezisy dokladov, ch;1, MGTU, 1991, ñ59-60. (In Russian)

14. Swenson C.M. et al. CRIT II electric, magnetic, and density measurements within an ionizing neutral stream // Geophysical research letters. – 1990. – Ò. 17. – ¹. 13. – Ñ. 2337-2340. https://doi.org/10.1029/GL017i013p02337

15. Zakharov Y.P. et al. New type of large-scale experiments for laboratory astrophysics with collimated jets of laser plasma in a transverse magnetic field // Quantum Electronics. – 2019. – Ò. 49. – ¹. 2. – Ñ. 181-186. https://doi.org/10.1070/QEL16884

16. Zakharov Y.P. et al. On the opportunity of Laser Plasma simulation of Plasma Jets formation in moderate magnetic fields kGs // Journal of Physics: Conference Series. – IOP Publishing, 2021. – Ò. 2067. – ¹. 1. – id. 012021. – C. 5. https://doi.org/10.1088/1742-6596/2067/1/012021

17. Belyaev V.S. et al. Numerical simulations of magnetized astrophysical jets and comparison with laboratory laser experiments // Astronomy Reports. – 2018. – Ò. 62. – ¹. 3. – Ñ. 162-182. https://doi.org/10.1134/S1063772918030034

18. Beskin V.S., Krauz V.I., Lamzin S.A. Laboratornoe modelirovanie struinykh vybrosov iz molodykh zvezd na ustanovkakh s plazmennym fokusom [Laboratory modeling of jets from young stars using plasma focus facilities] // Uspekhi fizicheskikh nauk. – 2023. – Ò. 193. – ¹. 4. – Ñ. 345-381. https://doi.org/10.3367/UFNr.2021.12.039130 (In Russian)

19. Kiselev Yu.N., Poklad Yu.V., Khristoforov B.D. Oblast' soudareniya vysokoskorostnykh plazmennykh strun svintsa-moshchnyi istochnik zhestkogo UF-izlucheniya [The collision region of high-speed plasma lead strings is a powerful source of hard UV radiation]. 3-i Mezhgosudarstvennyi simpozium po radiatsionnoi plazmodinamike. Tezisy dokladov, “Inzhener”, 1994, ñ28-29. (In Russian)

20. Loseva T.V. et al. Nachal'naya stadiya razvitiya plazmennoi strui v aktivnykh geofizicheskikh raketnykh ehksperimentakh [Initial stage of plasma jet development in active geophysical rocket experiments] // Dinamicheskie protsessy v geosferakh. – 2024. – ¹. 9. – Ñ. 102-110. (In Russian)

21. Valko V.V. et al. Uravneniya sostoyaniya produktov detonatsii vzryvchatykh veshchestv [Equations of state for detonation products of explosives] // Preprinty Instituta prikladnoi matematiki im. MV Keldysha RAN. – 2021. – ¹. 51. – Ñ. 38. https://doi.org/10.20948/prepr-2021-51 (In Russian)

22. Valko V.V. et al. Simulation of an Air Shock Wave Using the Equations of State for the Jones–Wilkins–Lee Detonation Products // Mathematical Models and Computer Simulations. – 2022. – Ò. 14. – ¹. 6. – Ñ. 875-888. https://doi.org/10.1134/S2070048222060163

23. Gasilov V.A. et al. MARPLE: software for multiphysics modelling in continuous media // Numerical Methods and Programming. – 2023. – Ò. 24. – ¹. 4. – Ñ. 316-338. https://doi.org/10.26089/NumMet.v24r423

24. Poklad Yu.V. Vzryvnye generatory plazmennykh strui dlya ehksperimental'nogo modelirovaniya i aktivnykh geofizicheskikh ehksperimentov : dis. – In-t dinamiki geosfer, 1996. (In Russian)

25. Erlandson R.E. et al. North star Plasma-jet space experiment // Journal of Spacecraft and Rockets. – 2004. – Ò. 41. – ¹. 4. – Ñ. 483-489. https://doi.org/10.2514/1.11943

26. Adushkin V.V. et al. Aktivnye ehksperimenty “Flaksus 1, 2”: issledovanie vzaimodeistviya plazmennoi strui s geofizicheskoi sredoi na vysote 140 km [Active Experiments “Flaxus 1, 2”: Study of the Interaction of a Plasma Jet with the Geophysical Environment at an Altitude of 140 km] // DAN RF. – 1998. – Ò. 361. – ¹. 6. – Ñ. 818. (In Russian)

27. Chemezov D.A. Description of library materials software package ANSYS AUTODYN // ISJ Theoretical & Applied Science. – 2014. – Ò. 16. – ¹. 8. – Ñ. 4-23. http://dx.doi.org/10.15863/TAS.2014.08.16.2

28. Savenko N.O. et al. Numerical Simulation of Plasma Jet Expansion in a Laboratory Experiment // Plasma Physics Reports. – 2025. – Ò. 51. – ¹. 6. – Ñ. 697-707. https://doi.org/10.1134/S1063780X25602755

29. Savenko N.O., Urvachev E.M. Chislennoe modelirovanie vysokoskorostnykh plazmennykh strui pri proizvol'nom ugle inzhektsii [Numerical simulation of high-velocity plasma jets at arbitrary injection angles] // Preprinty Instituta prikladnoi matematiki im. MV Keldysha RAN. – 2025. – ¹. 28. – Ñ. 21. EDN: QJIUBT (In Russian)

30. Bdzil J.B., Stewart D.S. The dynamics of detonation in explosive systems // Annu. Rev. Fluid Mech. – 2007. – Ò. 39. – ¹. 1. – Ñ. 263-292. https://doi.org/10.1146/annurev.fluid.38.050304.092049

31. Lee E., Finger M., Collins W. JWL equation of state coefficients for high explosives. – Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 1973. – ¹. UCID-16189.

32. Gorbatenko A.A. Analiz uravneniya sostoyaniya produktov detonatsii JWL [Analysis of the equation of state of detonation products JWL] // Molodezhnyi nauchno-tekhnicheskii vestnik. – 2012. – ¹. 3. – Ñ. 11. (In Russian)

33. Medin S.A., Parshikov A.N. Ispol'zovanie uravneniya sostoyaniya jwl i makrokineticheskogo uravneniya razlozheniya vv v metode sph [Method sph with jwl equations of state and macrokinetic reaction rate equation for explosive detonation] // Fiziko-khimicheskaya kinetika v gazovoi dinamike. – 2012. – Ò. 13. – ¹. 4. – Ñ. 6. (In Russian)

34. Gerasimov S.I. et al. Detonation Velocity of the VS-2 Pyrotechnic Composition and the Jones–Wilkins–Lee Equation-of-State Parameters of Its Explosion Products // Combustion, Explosion, and Shock Waves. – 2022. – Ò. 58. – ¹. 2. – Ñ. 217-225. https://doi.org/10.1134/S0010508222020113

35. Nikiforov A.F., Novikov V.G., Uvarov V.B. Quantum-statistical models of hot dense matter: methods for computation opacity and equation of state. – Basel : Birkhäuser Basel, 2005.

36. Vichev I.Y. et al. On certain aspects of the THERMOS toolkit for modeling experiments // High Energy Density Physics. – 2019. – Ò. 33. – id. 100713. – C. 7. http://dx.doi.org/10.1016/j.hedp.2019.100713.

37. Popel S.I. et al. Shock waves in charge-varying dusty plasmas and the effect of electromagnetic radiation // Physics of Plasmas. – 2000. – Ò. 7. – ¹. 6. – Ñ. 2410-2416. http://dx.doi.org/10.1063/1.874079

38. Losseva T.V., Popel S.I., Golub’ A.P. Dust ion–acoustic shock waves in laboratory, ionospheric, and astrophysical plasmas // Plasma Physics Reports. – 2020. – Ò. 46. – ¹. 11. – Ñ. 1089-1107. https://doi.org/10.1134/S1063780X20110045

39. Pfaff R.F. et al. Electric field, magnetic field, and density measurements on the active plasma experiment sounding rocket // Journal of spacecraft and rockets. – 2004. – Ò. 41. – ¹. 4. – Ñ. 521-532. https://doi.org/10.2514/1.11945

40. Korsunskaya Yu.A., Pankova M.V. Vliyanie zhestkogo rentgenovskogo i gamma izluchenii solntsa na ionosferu zemli i drugie protsessy v geosferakh. Chast' III. Nochnaya oblast' [Influence of hard x-ray and gamma radiation from the sun on the earth's ionosphere and other processes in the geospheres. Part III. Night region] // Dinamicheskie protsessy v geosferakh. – 2021. – ¹. 13. – Ñ. 166-175. https://doi.org/10.26006/22228535_2021_1_166 (In Russian)

41. Losseva T.V. et al. Numerical Simulation of the Interaction of High-Velocity Plasma Jets Injected in the Earth’s Ionosphere // Plasma Physics Reports. – 2023. – Ò. 49. – ¹. 8. – Ñ. 991-999. https://doi.org/10.1134/S1063780X23600810

42. Rousskikh A.G. et al. Radiographic investigation of metal-puff plasma jets generated by vacuum arcs // IEEE Transactions on Plasma Science. – 2018. – Ò. 46. – ¹. 10. – Ñ. 3487-3492. https://doi.org/10.1109/TPS.2018.2849205

43. Lobok M.G., Brantov A.V., Bychenkov V.Y. Shielded radiography with gamma rays from laser-accelerated electrons in a self-trapping regime // Physics of Plasmas. – 2020. – Ò. 27. – ¹. 12. https://doi.org/10.1063/5.0028888

 

For citation:

Gasilov V.A., Savenko N.O., Urvachev E.M., Loseva T.V., Grushin A.S., Poklad Yu.V. On the modeling of plasma jet dynamics in laboratory experiments with a pulsed source // Journal of Radio Electronics. – 2025. – ¹. 11. https://doi.org/10.30898/1684-1719.2025.11.16