Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹11

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.11.17

17th International Conference

Gas Discharge Plasmas and Their Applications

Ekaterinburg, Russia, 8-12 September 2025

 

 

Pulsed Corona Discharge Ozone Generator

 

A.S. Chepusov, S.R. Korzhenevskiy, A.A. Komarskiy, A.V. Ponomarev, O.D. Krasniy

 

IEP UB RAS, 620016, 106, Amundsen str., Ekaterinburg, Russia

 

The paper was received October 2, 2025.

 

Abstract. Ozone is an allotropic modification of oxygen with unique oxidizing properties. It is widely used in disinfection of medical instruments and clothing, wastewater treatment, food decontamination, and in technological processes in metallurgy. The most common methods for ozone generation are barrier discharge ozonizers. However, this technology has a number of significant drawbacks that prevent its application in industry. An alternative is the use of corona discharges. The authors have developed an ozone generator based on pulsed corona discharge with a repetition rate of up to 300 Hz. The setup allows changing the electrode system, gas flow parameters, and electrical characteristics of the discharge, which makes it possible to conduct a wide range of studies of ozone generation for industrial applications. The experiments carried out allow us to distinguish 2 operating modes: with maximum concentration in the flow and with the best ozone productivity. No clear dependence on the electric field strength was revealed. It’s necessary to provide calculation of the microscopic field strength at the cathode surface. At high energy density the corona discharge transforms into the spark stage. It results in ozone generation decrease. A possible way to solve this problem and increase the efficiency of the installation is to use more productive air flow source and increase the frequency of high-voltage pulses.

Key words: ozone, ozone generator, corona discharge, gas reactor, high voltage nanosecond pulse source, solid-state switching system.

Corresponding author: Alexander Sergeevich Chepusov, chepusov@iep.uran.ru

 

References

1. Krylova L.N. Efficiency of ozone application for extraction of metals from mineral raw materials // Russian Journal of Non-Ferrous Metals. – 2022. – N63. – Pp. 247–255. https://doi.org/10.3103/S1067821222030087

2. Lunin V.V., Popovich M.P., Tkachenko S.N. Physical Chemistry of Ozone. – Moscow: Moscow State University Press, 1998. – 480 p.

3. Morfill G.E. et al. Nosocomial infections – a new approach towards preventive medicine using plasmas // New Journal of Physics. – 2009. – Ò. 11. – ¹. 11. – Ñ. 115019. https://doi.org/10.1088/1367-2630/11/11/115019

4. Shimizu T., Zimmermann J.L., Morfill G.E. The bactericidal effect of surface micro-discharge plasma under different ambient conditions // New Journal of Physics. – 2011. – Ò. 13. – ¹. 2. – Ñ. 023026. https://doi.org/10.1088/1367-2630/13/2/023026

5. Pavlovich M.J. et al. Effect of discharge parameters and surface characteristics on ambient‐gas plasma disinfection // Plasma Processes and Polymers. – 2013. – Ò. 10. – ¹. 1. – Ñ. 69-76. https://doi.org/10.1002/ppap.201200073

6. Traylor M.J. et al. Long-term antibacterial efficacy of air plasma-activated water // Journal of Physics D: Applied Physics. – 2011. – Ò. 44. – ¹. 47. – Ñ. 472001. https://doi.org/10.1088/0022-3727/48/49/494002

7. Filippov Yu.V., Voblikova V.A., Panteleev V.I. Electrosynthesis of Ozone. – Moscow State University, 1987.

8. Ñàìîéëîâè÷ Â.Ã., Ãèáàëîâ Â.È., Êîçëîâ Ê.Â. Ôèçè÷åñêàÿ õèìèÿ áàðüåðíîãî ðàçðÿäà. 1989 // Èçä. Ìîñê. óí-òà. – 1989. [Samoylovich V.G., Gibalov V.I., Kozlov K.V. Physical Chemistry of Barrier Discharge. 1989 // Publ. Moscow Univ. – 1989.]

9. Sung T.L. et al. Effect of pulse power characteristics and gas flow rate on ozone production in a cylindrical dielectric barrier discharge ozonizer // Vacuum. – 2013. – Ò. 90. – Ñ. 65-69. https://doi.org/10.1016/j.vacuum.2012.10.003

10. Burleson G.R., Murray T.M., Pollard M. Inactivation of viruses and bacteria by ozone, with and without sonication // Applied microbiology. – 1975. – Ò. 29. – ¹. 3. – Ñ. 340-344. https://doi.org/10.1128/am.29.3.340-344.1975

11. Fukawa F. et al. Application of nanosecond pulsed power to ozone production by streamer corona // IEEE transactions on plasma science. – 2008. – Ò. 36. – ¹. 5. – Ñ. 2592-2597. https://doi.org/10.1109/TPS.2008.2004372

12. Pokryvailo A., Wolf M., Yankelevich Y. Investigation of operational regimes of a high-power pulsed corona source with an all-solid state pulser // IEEE Transactions on Dielectrics and Electrical Insulation. – 2007. – Ò. 14. – ¹. 4. – Ñ. 846-857. https://doi.org/10.1109/TDEI.2007.4286515

13. Yuan D. et al. Ozone production with dielectric barrier discharge from air: The influence of pulse polarity // Ozone: Science & Engineering. – 2018. – Ò. 40. – ¹. 6. – Ñ. 494-502. https://doi.org/10.1080/01919512.2018.1476127

14. Filatov I.E., Surkov Y.S., Kuznetsov D.L. Influence of discharge chamber parameters on the efficiency of ozone generation by pulsed corona discharge // Technical Physics Letters. – 2022. – Ò. 48. – ¹. 7. – Ñ. 25. https://doi.org/10.21883/TPL.2022.07.54032.19210

15. Mennad B. et al. Theoretical investigation of ozone production in negative corona discharge // Current Applied Physics. – 2010. – Ò. 10. – ¹. 6. – Ñ. 1391-1401. https://doi.org/10.1016/j.cap.2010.04.013

16. Output voltage adjustment of a pulsed high-voltage nanosecond generator with inductive energy storage and a solid-state switching system / S.R. Korzhenevskiy, A.A. Komarskiy, A.S. Chepusov, V.A. Bessonova, V.N. Titov // Instruments and Experimental Techniques. – 2017. – V. 60, N1. – Pp. 46-49. https://doi.org/10.1134/S0020441217010213

17. Vasiliev P.V. et al. Operation of a semiconductor opening switch at microsecond pumping time and low current density // Semiconductor Physics and Technology. – 2009. – Vol. 43. – No. 7. – P. 985.

 

For citation:

Chepusov A.S., Korzhenevskiy S.R., Komarskiy A.A., Ponomarev A.V., Krasniy O.D. Pulsed Corona Discharge Ozone Generator // Journal of Radio Electronics. – 2025. – ¹. 11. https://doi.org/10.30898/1684-1719.2025.11.17 (In Russian)