Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹11

Contents

Full text

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.11.26  

 

 

 

A New Algorithm for Detecting Motion Artifacts

in Video-EEG Monitoring Data

 

D.M. Murashov 1, Yu.V. Obukhov 2, I.A. Kershner 2,

M.V. Sinkin 3, I.V. Okuneva 3

 

1 Federal Research Center “Computer Science and Control” of RAS,

119333, Russia, Moscow, 42 Vavilov str.

2 Kotelnikov IRE RAS, 125009, Russia, Moscow, Mokhovaya str., 11, b.7

3 Sklifosovsky Research Institute for Emergency Medicine,

129090, Russia, Moscow, Bolshaya Suharevskaya Square, 3.

 

The paper was received November 6, 2025.

 

Abstract. The article proposes a new algorithm for detecting artifacts in video recordings of long-term video-EEG monitoring data in the context of the problem of diagnosing delayed cerebral ischemia after subarachnoid hemorrhage. The main idea of the new algorithm is as follows. First, to ensure the invariance of the algorithm with respect to illumination variations, we calculate the motion measures from the edge map of the region of interest. Secondly, to expand the set of motion measures by including variation of information between the blurred edge maps of two consecutive frames. Third, to combine detectors that use different measures of scene motion. An experiment on clinical video-EEG monitoring data showed that the proposed algorithm provides sensitivity of 0.94, specificity of 0.94, accuracy of 0.94, and F1 score of 0.91.  The obtained characteristics correspond to the level of known motion detectors in video-EEG data.

Key words: video-electroencephalographic monitoring; optical flow; variation of information; edge map; artifacts; cerebral ischemia; motion measure.

Financing: The study was funded by the Russian Science Foundation Grant  No. 22-69-00102, https://rscf.ru/en/project/22-69-00102/.

Corresponding author: Kershner Ivan Andreevich, ivan_kershner@mail.ru

 

References

1. Murashov D. et al. An algorithm for detecting artifacts in video recordings of long-term video-EEG monitoring data for the diagnostics of delayed cerebral ischemia // 2023 IX International Conference on Information Technology and Nanotechnology (ITNT). – IEEE, 2023. – Ñ. 1-5. https://doi.org/10.1109/itnt57377.2023.10139085

2. Zhu H. et al. A review of video object detection: Datasets, metrics and methods // Applied Sciences. – 2020. – Ò. 10. – ¹. 21. – Ñ. 7834. https://doi.org/10.3390/app10217834

3. Cattani L. et al. Monitoring infants by automatic video processing: A unified approach to motion analysis // Computers in biology and Medicine. – 2017.  – Ò. 80. – Ñ. 158-165. https://doi.org/10.1016/j.compbiomed.2016.11.010

4. Geertsema E.E. et al. Automated non-contact detection of central apneas using video // Biomedical Signal Processing and Control. – 2020. – Ò. 55. – Ñ. 101658. https://doi.org/10.1016/j.bspc.2019.101658

5. van Westrhenen A. et al. Automated video‐based detection of nocturnal motor seizures in children // Epilepsia. – 2020. – Ò. 61. – Ñ. S36-S40. https://doi.org/10.1111/epi.16504

6. Lucas B.D., Kanade T. An iterative image registration technique with an application to stereo vision // IJCAI'81: 7th international joint conference on Artificial intelligence. – 1981. – Ò. 2. – Ñ. 674-679.

7. Huang Z. et al. Life: Lighting invariant flow estimation // arXiv preprint arXiv:2104.03097. – 2021.

8. Trinh D.H., Daul C. On illumination-invariant variational optical flow for weakly textured scenes // Computer Vision and Image Understanding. – 2019. – Ò. 179.  – Ñ. 1-18.

9. Demetz O., Hafner D., Weickert J. The Complete Rank Transform: A Tool for Accurate and Morphologically Invariant Matching of Structures // BMVC.  – 2013. https://doi.org/10.5244/C.27.50

10. Zabih R., Woodfill J. Non-parametric local transforms for computing visual correspondence // European conference on computer vision.  – Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. – Ñ. 151-158. https://doi.org/10.1007/BFb0028345

11. Kabir M.H., Jabid T., Chae O. A local directional pattern variance (LDPv) based face descriptor for human facial expression recognition // 2010 7th IEEE international conference on advanced video and signal based surveillance.  – IEEE, 2010. – Ñ. 526-532.

12. Mohamed M.A. et al. Illumination-robust optical flow using a local directional pattern // IEEE Transactions on Circuits and Systems for Video Technology.  – 2014. – Ò. 24. – ¹. 9. – Ñ. 1499-1508.

13. Molnár J., Chetverikov D., Fazekas S. Illumination-robust variational optical flow using cross-correlation // Computer Vision and Image Understanding. – 2010.  – Ò. 114. – ¹. 10. – Ñ. 1104-1114.

14. Ali S. et al. Illumination invariant optical flow using neighborhood descriptors // Computer Vision and Image Understanding. – 2016. – Ò. 145. – Ñ. 95-110. https://doi.org/10.1016/j.cviu.2015.12.003

15. Manilo L.A., Nemirko A.P. Recognition of biosignals with nonlinear properties by approximate entropy parameters // Computer Optics. – 2023. – Ò. 47. – ¹. 5.  – Ñ. 832-840. https://doi.org/10.18287/2412-6179-CO-1345

16. Yadav D.K., Singh K. A combined approach of Kullback–Leibler divergence and background subtraction for moving object detection in thermal video // Infrared Physics & Technology. – 2016. – Ò. 76. – Ñ. 21-31.

17. Meilă M. Comparing clusterings–an information based distance // Journal of multivariate analysis. – 2007. – Ò. 98. – ¹. 5. – Ñ. 873-895.

18. Stork D.G. et al. Pattern classification // A Wiley-Interscience Publication.  – 2001. – Ò. 1. – Ñ. 281-297.

19. Pratt W.K. Digital image processing: PIKS Scientific inside. – Hoboken, New Jersey : Wiley-interscience, 2007. – Ò. 4. http://doi.org/10.1002/0471221325

20. Canny J. A computational approach to edge detection // IEEE Transactions on pattern analysis and machine intelligence. – 2009. – ¹. 6. – Ñ. 679-698.

21. Chaddock R.E. Principles and methods of statistics. – Houghton Mifflin, 1925.

22. Dmitry M. et al. Application of frequency features of optical flow  for event detection in video-EEG monitoring data // Journal of Biomedical  Photonics & Engineering. – 2021. – Ò. 7. – ¹. 3. – Ñ. 30301. http://doi.org/10.18287/JBPE21.07.030301

23. Rai P. et al. Automated analysis and detection of epileptic seizures in video recordings using artificial intelligence // Frontiers in Neuroinformatics. – 2024.  – Ò. 18. – Ñ. 1324981.

24. Ulate-Campos A. et al. Automated seizure detection systems and their effectiveness for each type of seizure // Seizure. – 2016. – Ò. 40. – Ñ. 88-101. https://doi.org/10.1016/j.seizure.2016.06.008

25. Pediaditis M., Tsiknakis M., Leitgeb N. Vision-based motion detection, analysis and recognition of epileptic seizures–a systematic review // Computer methods and programs in biomedicine. – 2012. – Ò. 108. – ¹. 3. – Ñ. 1133-1148.

26. Cuppens K. et al. Automatic video detection of body movement during sleep based on optical flow in pediatric patients with epilepsy // Medical & biological engineering & computing. – 2010. – Ò. 48. – ¹. 9. – Ñ. 923-931.

27. Kalitzin S. et al. Automatic segmentation of episodes containing epileptic clonic seizures in video sequences // IEEE transactions on biomedical engineering. – 2012. – Ò. 59. – ¹. 12. – Ñ. 3379-3385. https://doi.org/10.1109/TBME.2012.2215609

For citation:

Murashov D.M., Obukhov Yu.V., Kershner I.A., Sinkin M.V., Okuneva I.V. A new algorithm for detecting motion artifacts in video-EEG monitoring data // Journal of Radio Electronics. – 2025.  – ¹. 11. https://doi.org/10.30898/1684-1719.2025.11.26