Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹11

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.11.28

 

 

 

ELECTRONIC AND MAGNETIC PROPERTIES

OF TWO-COMPONENT Cr(ClxF1-x)3 SOLID SOLUTIONS

 

I.S. Lebedev 1, A.V. Kudryavtsev 1, A.I. Kartsev 1,2, E.T. Mirzoeva 1

 

1 MIREA – Russian Technological University

119454, Russia, Moscow, 78 Vernadsky Avenue

2 Computing Center of the Far Eastern Branch RAS

65, Kim Yu Cheng St., Khabarovsk, 680063, Russia

 

The paper was received October 3, 2025.

 

Abstract. In this paper, the effect of doping on the electronic and magnetic properties of a monolayer compound Cr(ClxF1-x)3 is studied based on a first-principles calculation. The densities of electronic states, the values of the band gap, the constants of the crystal lattice and the difference in total energies for ferromagnetic and antiferromagnetic configurations at different mutual concentrations of chlorine and fluorine atoms were calculated in the course of the work. The calculations were performed using the method of density functional theory with the Hubbard correction, which takes into account the strong localization of chromium d-electrons, and the composition variation was implemented using the virtual crystal method. It is found that the studied materials retain a semiconductor character for the entire range of the longitudinal coefficient x, while the band gap varies from 2.30 to 2.94 eV, and the lattice constant varies from 5.74 to 6.04 Å. It has been established that for all the studied ratios of elements in the composition of a solid solution, the ferromagnetic state is the most energetically advantageous. The energy difference between the antiferromagnetic and ferromagnetic configurations does not change monotonously, which is due to the varying degree of contribution of exchange interactions when the composition changes. The results obtained indicate the possibility of controlling the electronic and magnetic properties by changing the composition of the solid solution, which makes this class of materials promising for use in spintronics and magneto-optical devices.

Key words: two-dimensional magnetism, solid solutions, density functional theory, electronic density of states, ferromagnetism, antiferromagnetism.

Financing: This work was supported by the Russian Science Foundation (grant No. 25-23-20239).

Corresponding author: Kudryavtsev Andrey Vladimirovich, kudryavcev_a@mirea.ru  

 

References

1. Huang B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit // Nature. – 2017. – Ò. 546. – ¹ 7657. – Ñ. 270–273. https://doi.org/10.1038/nature22391

2. Gong C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals // Nature. – 2017. – Ò. 546. – ¹ 7657. – Ñ. 265–269. https://doi.org/10.1038/nature22060

3. Ruiz A.M., Baldovi J.J. Switchable magnetic phases in CrSBr₁−ₓClₓ and CrSBr/CrSCl heterostructures // Arxiv Mat. Sci. – 2024. https://doi.org/10.48550/arXiv.2412.19136

4. Qi Y. et al. Recent progress in strain engineering on van der Waals 2D materials: tunable electrical, electrochemical, magnetic, and optical properties // Adv. Mater. – 2023. – Ò. 35. https://doi.org/10.1002/adma.202205714

5. Pawbake A. et al. Magneto-optical sensing of the pressure-driven magnetic ground states in bulk CrSBr // Nano Lett. – 2023. – Ò. 23. – Ñ. 9587–9593. https://doi.org/10.1021/acs.nanolett.3c03216

6. Zhang G. et al. Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe₃GaTe₂ with large perpendicular magnetic anisotropy // Nat. Commun. – 2022. – Ò. 13. – Ñ. 5067. https://doi.org/10.1038/s41467-022-32605-5

7. May A.F. et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe₅GeTe₂ // ACS Nano. – 2019. – Ò. 13. – Ñ. 4436–4442. https://doi.org/10.1021/acsnano.8b09660

8. Lee J.-U. et al. Ising-type magnetic ordering in atomically thin FePS₃ // Nano Lett. – 2016. – Ò. 16. – Ñ. 7433–7438. https://doi.org/10.1021/acs.nanolett.6b03052

9. Long G. et al. Persistence of magnetism in atomically thin MnPS₃ crystals // Nano Lett. – 2020. – Ò. 20. – Ñ. 2452–2459. https://doi.org/10.1021/acs.nanolett.9b05165

10. Kim K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS₃ // Nat. Commun. – 2019. – Ò. 10. – Ñ. 345. https://doi.org/10.1038/s41467-018-08284-6

11. Lado J.L., Fernández-Rossier J. On the origin of magnetic anisotropy in two dimensional CrI3 // 2D Materials. – 2017. – Ò. 4. – ¹. 3. – Ñ. 035002. https://doi.org/10.1088/2053-1583/aa75ed

12. Ìèðçîåâà Å.Ò., Êóäðÿâöåâ À.Â. Ïåðâîïðèíöèïíûé ðàñ÷åò ýëåêòðîííîé ñòðóêòóðû ìîíîñëîÿ CeI 3 // Russian Technological Journal. – 2025. – Ò. 13. – ¹. 4. – Ñ. 47-54. https://doi.org/10.32362/2500-316X-2025-13-4-47-54

13. Bedoya-Pinto A. et al. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer // Nat. Phys. – 2021. – Ò. 17. – ¹ 6. – Ñ. 687–691. https://doi.org/10.1126/science.abd5146

14. Xie L.M. Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications // Nanoscale. – 2015. – Ò. 7. – Ñ. 18392–18401. https://doi.org/10.1039/c5nr05712d

15. Lin Y., Torsi R., Geohegan D.B., Robinson J.A., Xiao K. Controllable thin-film approaches for doping and alloying transition metal dichalcogenides monolayers // Adv. Sci. – 2021. – Ò. 8. https://doi.org/10.1002/advs.202004249

16. Abramchuk M. et al. Controlling magnetic and optical properties of the van der Waals crystal CrCl₃−ₓBrₓ via mixed halide chemistry // Adv. Mater. – 2018. – Ò. 30. https://doi.org/10.1002/adma.201801325

17. Telford E.J. et al. Designing magnetic properties in CrSBr through hydrostatic pressure and ligand substitution // Adv. Phys. Res. – 2023. – Ò. 2. https://doi.org/10.1002/apxr.202300036

18. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett. – 1996. – Ò. 77. – Ñ. 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

19. Eckhardt C., Hummer K., Kresse G. Indirect-to-direct gap transition in strained and unstrained SnₓGe₁−ₓ alloys // Phys. Rev.B. – 2014. – Ò. 89. – ¹ 165201. – DOI: 10.1103/PhysRevB.89.165201. https://doi.org/10.1103/PhysRevB.89.165201

20. Dudarev S.L., Botton G.A., Savrasov S.Y., Humphreys C.J., Sutton A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study // Phys. Rev.B. – 1998. – Ò. 57. – ¹ 3. – Ñ. 1505–1509. https://doi.org/10.1103/PhysRevB.57.1505

21. Liu J., Sun Q., Kawazoe Y., Jena P. Exfoliating biocompatible ferromagnetic Cr trihalide monolayers // Phys. Chem. Chem. Phys. – 2016. – Ò. 18. – Ñ. 8777–8784. https://doi.org/10.1039/c5cp04835d

22. Froeschke S. et al. Structural and magnetic transitions caused by dimer formation in the CrCl₃–MoCl₃ solid solution // Chem. Mater. – 2024. – Ò. 36. https://doi.org/10.1021/acs.chemmater.3c03109

23. Chen X. et al. Discovery of an ultrastable antiferromagnetic two-dimensional CrF₃ phase with anisotropic quasi-one-dimensional mechanical, electronic, and thermal properties // Phys. Rev.B. – 2025. – Ò. 111. https://doi.org/10.1103/PhysRevB.111.155425

24. Zhang W.B. et al. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides // J. Mater. Chem.C. – 2015. – Ò. 3. – Ñ. 12457–12468. https://doi.org/10.1039/C5TC02840J

 

For citation:

Lebedev I.S., Kudryavtsev A.V., Kartsev A.I., Mirzoeva E.T. Electronic and magnetic properties of two-component Cr(ClxF1-x)3 solid solutions // Journal of Radio Electronics. – 2025. – ¹. 11. https://doi.org/10.30898/1684-1719.2025.11.28 (In Russian)