

DOI: https://doi.org/10.30898/1684-1719.2025.11.29

УДК: 537.9; 621.382; 539.23

СПИНТРОННЫЕ ТГЦ ЭМИТТЕРЫ НА ОСНОВЕ ГРАФЕНА И АНТИФЕРРОМАГНЕТИКОВ

А.Л. Алферьев ¹, А.В. Горбатова ¹, Е.А. Булавинцева ¹, А.И. Карцев ¹, А.А. Климов ¹, А.М. Буряков ¹, Н.С. Гусев ², М.В. Сапожников ^{1,2}

¹ МИРЭА – Российский технологический университет, 119454, Россия, Москва, пр-т Вернадского, д. 78 ² Институт физики микроструктур РАН, 603087, Россия, Нижегородская обл., Кстовский район, д. Афонино, ул. Академическая, д. 7

Статья поступила в редакцию 3 октября 2025 г.

Аннотация. Исследованы механизмы терагерцовой эмиссии в спинтронных ТГц-эмиттерах Со (3 нм), графен(Gr)/Со (3 нм) и Со (3 нм)/FeMn (5 нм), выращенных на кварцевых подложках. Магнитные свойства охарактеризованы в продольной геометрии магнитооптического эффекта Керра (МОЭК), динамика излучения – методом терагерцовой спектроскопии во временной области (THz-TDS). В Gr/Co интерфейс с графеном индуцирует перпендикулярную магнитную анизотропию; фаза ТГц-сигналов инвариантна к стороне накачки при фиксированной полярности магнитного поля, что указывает на доминирование сверхбыстрого лазерно-индуцированного размагничивания. При накачке со стороны подложки амплитуда возрастает приблизительно в 1.5 раза, тогда как при фронтальном облучении уменьшается примерно вдвое, что согласуется с различиями в оптическом/ТГц-поглощении. В Со/FeMn антиферромагнитный слой формирует выраженную одноосную анизотропию в плоскости и повышает коэрцитивность; инверсия фазы при смене стороны накачки свидетельствует о преобладании обратного спинового эффекта Холла. Обменное смещение при выбранных толщинах и без термообработки не обнаружено. Дополнительно

выявлена асимметрия петель ТГц-гистерезиса в Co/FeMn, указывающая на присутствие четных по намагниченности вкладов в эмиссию. Результаты подчеркивают ключевую роль интерфейсной инженерии в структурах Co/антиферромагнетик и Gr/Co для управления спин-зарядовой конверсией и параметрами ТГц-эмиттеров.

Ключевые слова: спинтронный ТГц-эмиттер, сверхбыстрое размагничивание, обратный спиновый эффект Холла, графен, FeMn, перпендикулярная магнитная анизотропия, МОЭК, ТГц-спектроскопия.

Финансирование: Исследование параметров ТГц-спинтронных генераторов было выполнено при поддержке Российского научного фонда (проект № 24-79-10302). Разработка спинтронных И изготовление структур магнетронного напыления – при поддержке Министерства науки и высшего образования Российской Федерации (проект № FSFZ-2025-0002). Создание и первичная характеризация образцов проводилась c использованием оборудования ЦКП "Физика и технология микро- и наноструктур" (ИФМ РАН).

Автор для переписки: Алферьев Артем Леонидович, alferev@mirea.ru

Введение

В области спинтронных ТГц генераторов существенный прогресс начался с публикации Каmpfrath Т. et al., в которой была показана возможность ТГц генерации через спин-зарядовую конверсию в магнитных гетероструктурах [1-2]. С тех пор было разработано значительное количество многослойных структур типа ферромагнетик(FM)/немагнитный металл (NM), методов управления фазой и амплитудой ТГц-импульсов и другими параметрами спинтронных ТГц источников [3-8]. При этом остаются существенные пробелы в понимании и оптимизации эффективности этих устройств, особенно при использовании двумерных и гибридных материалов. С момента открытия графена в 2004 г. [9] и последующего бума двумерных материалов наблюдается их активное изучение для применения в спинтронике [10]. Графен и дихалькогениды переходных металлов (ДПМ) со структурной формулой

 $(MX_2, M = W, Mo, V; X = S, Se, Te)$ сочетают 2D структуру с сильным спинорбитальным взаимодействием, что открывает возможность управления магнитной анизотропией и усиления эффектов (например, обратный эффект Рашба-Эдельштейна/обратный спиновый эффект Холла) возникающих на интерфейсе FM/NM. Нарушение инверсионной симметрии в таких двумерных системах приводит к образованию неэквивалентных К-долин и разделению спиновых состояний, что позволяет избирательно возбуждать носители заряда заданным псевдоспином циркулярно поляризованным светом [11-12]. Фотогальванический эффект в гетероструктурах FM/2D-MX₂ дополнительно обменным взаимодействием усиливается границе, обеспечивая на энергетическое расщепление зон [13].

Отдельного внимания заслуживают гетероструктуры на основе графена, демонстрирующие ключевую роль 2D-интерфейсов в сверхбыстром переносе спина. В гибридных гетероструктурах из графена(Gr)/CoFeB установлена обратная связь между временем сверхбыстрого размагничивания τ_m и параметром демпфирования Гилберта α , что указывает на накопление спинов на интерфейсе и эффективный перенос спинового тока через графен [14]. Дополняя эту картину, в структуре Pt(3 hm)/Gr/Py(2 hm) наблюдается практически полное подавление $T\Gamma_{\text{Ц}}$ -излучения по сравнению с Pt/Py, что свидетельствует об эффективном блокировании спинового тока графеновым слоем и низкой межслоевой спиновой проводимости вдоль оси c; одновременно фиксируется уменьшение демпфирования [15].

Однако к настоящему времени лишь единичные работы посвящены гибридным ТГц-эмиттерам на основе материалов ферромагнетик/двумерный (FM/2D, где 2D — графен или дихалькогениды переходных металлов). В частности, в Co/MoS₂ и WSe₂ была продемонстрирована эффективная спиновая инжекция в монослой [16-17]. В гетероструктуре FeCo/WSe₂ показано усиление ТГц-сигнала за счет конструктивных интерференционных эффектов и обратного транспорта горячих носителей [18]. Таким образом, интеграция двумерных полупроводниковых материалов с ферромагнетиками и антиферромагнетиками

формирует новую платформу для создания спинтронных ТГц-эмиттеров нового поколения, где ключевыми задачами остаются оптимизация интерфейсов, понимание ультрабыстрых спин-зарядовых процессов и разработка безполевых режимов управления излучением.

1. Объекты и методика исследования

В настоящей работе представлены результаты исследования трех ТГц генераторов: Co(3 нм); графен(Gr)/Co(3 нм); Co(3 нм)/FeMn(5 нм), выращенных на подложке из кварца. Графен был выращен методом химического осаждения из газовой фазы (CVD-графен, монослой, РУСГРАФЕН). Металлические слоистые структуры Со и FeMn изготавливались методом магнетронного распыления в атмосфере аргона при комнатной температуре на вращающейся подложке. Скорость вращения подложкодержателя 50 об/мин. Предварительная откачка в камере осуществлялась до 5×10^{-6} Торр, при этом рабочее давление газа аргона составляло 4×10^{-3} Торр. Мишень FeMn представляет собой сплав железа и марганца в соотношении 50 % на 50 %. Толщина слоев определялась по предварительной калибровке скоростей напыления при помощи рентгеновского дифрактометра. Для формирования заданного направления оси магнитной анизотропии в процессе роста магнитных пленок было приложено магнитное поле 1000 Гс, направленное в плоскости подложки. Перед напылением поверхность подложек была очищена в плазме низкоэнергетичных ионов аргона. Антиферромагнетик Fe₅₀Mn₅₀ на слое кобальта выращивался с целью усиления одноосной магнитной анизотропии за счет обменного взаимодействия между FeMn и Co.

Перед нанесением пленки кобальта поверхностная структура графена была подробно проанализирована. АСМ-топография (рис. 1) демонстрирует однородное покрытие подложки более чем на 95 % при характерном размере зерен > 20 мкм и оптической прозрачности > 97 %. На карте высот отчетливо видны технологические морщины (wrinkles) высотой 1.5–5 нм, а также редкие

частицы до нескольких десятков нанометров, что типично для процесса переноса CVD-графена.

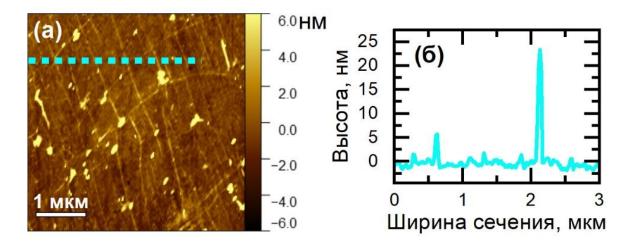


Рис. 1. АСМ топография CVD-графена, перенесенного на подложку SiO₂: а) общий вид покрытия (однородность пленки, технологические морщины и частицы); б) место сечения профиля высоты, определенное пунктирной «бирюзовой» линией на панели в области графена.

АСМ-сканирование, проведенное на границе монослоя и подложки (зеленая линия на рис. 2(а)), показало наличие «ступеньки» порядка 0.8 нм (рис. 2(б)). Полученное значение превышает номинальную толщину атомарного слоя (~0.35 нм), однако согласуется с известными особенностями АСМ-метрологии графена на SiO₂: вклад адсорбированных молекул и взаимодействие зонда с подложкой приводят к незначительному завышению результата оценки высоты [19-20].

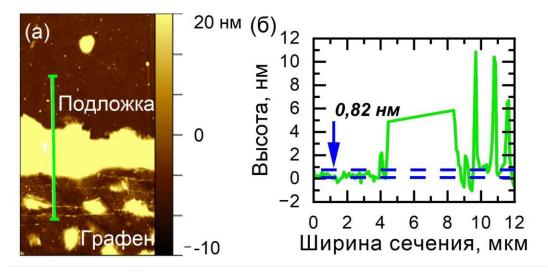


Рис. 2. Область на краю пленки графена: а) АСМ топография поверхности; б) профиль поверхности, взятый из сечения (а).

2. Магнитные свойства структур

Анализ магнитных свойств изготовленных структур проведен методом продольного магнитооптического эффекта Керра (МОЭК). Петли МОЭК регистрировались при приложении внешнего магнитного поля (H_{ext}) вдоль оси легкого намагничивания (ОЛН) и оси трудного намагничивания (ОТН). Для ТГц-генератора Со(3) (рис. 3а) черная (ОЛН, легкая ось) и зеленая (ОТН, трудная ось) кривые практически совпадают, что указывает на отсутствие выраженной одноосной анизотропии в плоскости. Это свидетельствует о том, приложенное росте пленки что при магнитное поле не создало предпочтительного направления намагниченности в плоскости образца. Для $T\Gamma$ ц-генератора Gr/Co(3 нм) (рис. 3(6)) картина принципиально отличается: наблюдается остаточная намагниченность $H_{ext}=0.$ пониженная при При измерении вдоль направления ОЛН в плоскости пленки остаточная намагниченность составляет не более 38 % при перемагничивании из области положительного поля насыщения до $H_{ext} = 0$. Аналогично, при обратном намагничивании из области отрицательного поля насыщения остаточная плоскостная компонента намагниченности не превышает 14 %. Достижение полного магнитного насыщения требует приложения магнитного поля H_{ext} порядка 0.4 кЭ в плоскости пленки, что подтверждает полную ориентацию намагниченности в плоскости лишь при значительных полях.

Наблюдаемый эффект мы связываем с кластерным характером роста пленки кобальта на графене. Поскольку каждый кристаллит обладает собственной осью анизотропии, и направления этих осей различаются между собой, при отсутствии внешнего магнитного поля наблюдается околонулевая результирующая намагниченность. Согласно данным литературы, низкая энергия связи между металлом и углеродом способствует росту Со с образованием кластеров (или зерен) большого размера и низкой плотности [21]. Это, в свою очередь, приводит к повышению магнитной коэрцитивной силы за счет увеличения числа центров закрепления доменных стенок. Также следует отметить, что интерфейс «графен/Со» может индуцировать перпендикулярную

магнитную анизотропию (ПМА), смещая легкую ось вдоль нормали к пленке. Такой эффект согласуется с литературными данными: присутствие однослойного графена на поверхности кобальта существенно увеличивает поверхностную магнитокристаллическую анизотропию Со и переориентирует эффективную легкую ось в перпендикулярном направлении вплоть до толщин около 25Å [22].

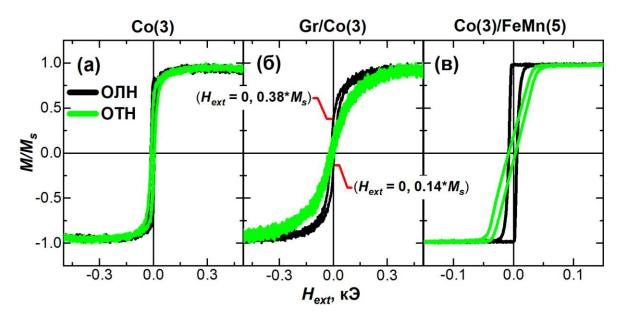


Рис. 3. Петли магнитооптического гистерезиса для образцов (а) Co(3 hm); (б) Gr/Co(3 hm); (в) Co(3 hm)/FeMn(5 hm).

Чтобы целенаправленно сформировать одноосную анизотропию добавили антиферромагнитный (АҒМ) слой в образце плоскости, МЫ МОЭК Co(3 HM)/FeMn(5 HM).Как видно форм петель (рис. 3(в)),ИЗ при намагничивании вдоль ОЛН наблюдается резкое переключение с высокой остаточной намагниченностью, тогда как вдоль ОТН кривая плавная и растянутая. Это указывает на успешно заданное предпочтительное направление намагниченности в плоскости. В то же время признаков обменного смещения (сдвига петли по оси поля) не обнаружено. Наиболее вероятные причины – слабая обменная связь на интерфейсе AFM/FM из-за малой толщины AFM-слоя и недостаточная энергия его анизотропии, из-за чего при перемагничивании FM-пленки подрешетки AFM также перемагничиваются [23]. Таким образом, слой FeMn при выбранных условиях формирует выраженную одноосную

магнитную анизотропию, но для реализации обменного смещения требуется дополнительная оптимизация технологического цикла.

3. ТГц-эмиссия: результаты и обсуждение

Методом ТГц-спектроскопии с временным разрешением (THz-TDS) были исследованы параметры ТГц-излучения, генерируемого созданной серией структур при облучении фемтосекундными лазерными импульсами. На рисунке 4 представлено сравнение временных форм ТГц-сигналов, генерируемых ТГц-эмиттерами Со(3 нм) и Gr/Co(3 нм) в зависимости от полярности прикладываемого внешнего магнитного поля $H_{ext} = \pm 2$ кЭ и направления облучения структуры: со стороны подложки (a, б) и со стороны пленки (в, г).

Как видно из результатов, независимо от направления облучения смена полярности магнитного поля приводит к изменению фазы ТГц-сигнала в обеих структурах, что указывает на спиновую природу генерируемого излучения. С другой стороны, при одинаковой полярности внешнего поля, например +2 кЭ (черная кривая), фаза генерируемого ТГц-сигнала не зависит от смены ориентации образца относительно падающего луча как для однослойной структуры (рис. 4 (а, в)), так и для гетероструктуры на основе графена (рис. 4 (б, г)). Это означает, что изменение направления возбуждения спинового тока в ферромагнитном слое не влияет на формирование ТГц-сигнала.

Наблюдаемое свидетельствует поведение 0 TOM, что основным механизмом генерации ТГц-излучения В таких структурах является сверхбыстрое лазерно-индуцированное размагничивание ферромагнитной пленки, которое создает возмущение магнитного диполя, протекающее без образования зарядовых токов [24-25]. Таким образом, именно этот механизм дает преимущественный вклад в ТГц-генерацию в гетероструктуре графен/Со.

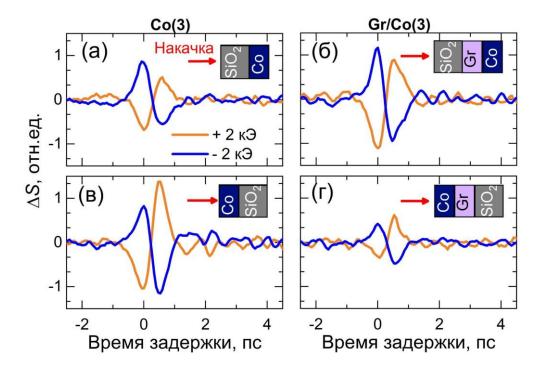


Рис. 4. Временные формы ТГц сигнала, генерируемого однослойной пленкой Со (3 нм) и гетероструктурой графен/Со(3 нм), при намагничивании вдоль легкой оси (ОЛН) и облучении лазерной накачкой со стороны подложки (а,б) и со стороны функциональных пленок (в,г), соответственно. Плотность энергии накачки в эксперименте составляла 1 мДж/см².

Сравнение амплитуд ТГц сигналов, генерируемых двумя структурами, показывает, что напыление кобальта на графене приводит к увеличению ТГц сигнала ~ в 1.5 раза при облучении структуры со стороны подложки (рис. 4 (а,б)). При облучении со стороны пленки сигнал уменьшается ~ в 2 раза (рис. 4 (в,г)). Разница в наблюдаемых сигналах, обусловлена различным поглощением оптических и ТГц волн в структуре с графеном, а также возможным вкладом интерференционных эффектов. Кроме того, графен обладает высоким удельным сопротивлением в направлении, перпендикулярном его плоскости [15]. Это приводит к существенному снижению эффективности ТГц эмиссии в структурах FM/графен/NM по сравнению с FM/NM из-за подавления спиновой инжекции в NM слой [15]. С другой стороны, чистый графен отличается слабым спин-орбитальным взаимодействием [26] (приблизительно на 4 порядка меньше, чем для Pt [27]), что делает его неэффективным преобразователем спинового тока в ток заряда при использовании в качестве NM слоя в спинтронном ТГц эмиттере. Однако, как показывают другие исследования, проектирование

интерфейсов на основе графена, например, путем внедрения материалов с сильной спин-орбитальной связью, таких как Pt или дихалькогениды переходных металлов, может повысить эффективность инжекции спинового тока и ТГц генерации, что было показано на примере таких структур, как графен/Pt/NiFe [28], графен/WS₂/NiFe [29] и графен/PtSe₂/CoFeB [30]. В гибридных системах перенос заряда на интерфейсе графен/полупроводник создает интерфейсное электрическое поле и индуцирует обратный эффект Рашба-Эдельштейна, обеспечивающий спин-зарядовое преобразование в полупроводниковом слое и генерацию ТГц излучения.

На рисунке 5 представлены петли магнитного гистерезиса ТГц-сигнала для Со(3 нм) и графен(Gr)/Со(3 нм), полученные при намагничивании вдоль ОЛН и ОТН. Интересным результатом оказалось то, что для Со(3 нм) проявилось хоть и небольшое, но выраженное различие между направлениями ОЛН и ОТН (черная и зеленая линии на рис. 5, соответственно), чего не наблюдалось в результатах магнитооптических измерений (рис. 3(а)). Мы связываем это с тепловыми эффектами, возникающими под воздействием мощного лазерного излучения, а также с большой площадью возбуждения порядка 7 мм² (диаметр пятна ~ 3 мм) по сравнению с МОЭК (менее 0.8 мм²). Для структуры Gr/Со результаты ТГц-измерений согласуются с данными МОЭК, подтверждая отсутствие плоскостной магнитной анизотропии в ферромагнитной пленке кобальта и доминирование ПМА.

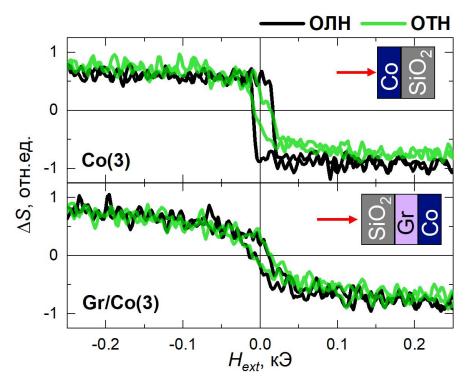


Рис. 5. Петли магнитного гистерезиса ТГц сигнала в спинтронных эмиттерах на основе однослойной пленки кобальта и гетероструктуры графен(Gr)/Со (3 нм), полученные при намагничивании вдоль легкой (ОЛН) и трудной (ОТН) осей магнитокристаллической анизотропии.

На рисунке 6(а) представлены временные формы ТГц импульсов, генерируемых структурой Co(3 нм)/FeMn(5 нм) при изменении полярности внешнего магнитного поля ($H_{ext} = \pm 2 \text{ к}$ Э). На рисунке 6(б) представлены временные формы ТГц сигналов, полученные при лазерном облучении со стороны подложки (BS) и со стороны пленки (FS). Наблюдаемая инверсия фазы ТГц сигнала при изменении полярности внешнего магнитного поля и направления инжекции спинового тока из ферромагнитного слоя в антиферромагнетик указывает на доминантную роль обратного спинового эффекта Холла в генерации ТГц излучения.

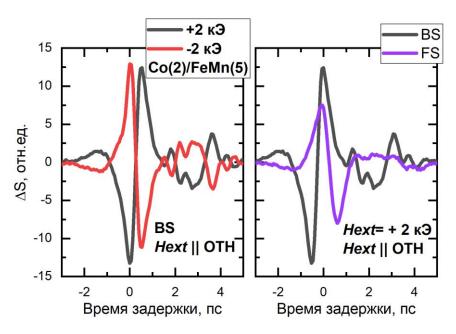


Рис. б. Временные формы ТГц сигнала, генерируемого структурой Co/FeMn при намагничивании вдоль ОТН для разных полярностей магнитного поля (а) и для разных сторон структуры: задней стороны (BS) и лицевой стороны (FS) (б).

На рисунке 7 представлены петли ТГц гистерезиса при намагничивании вдоль ОЛН (черная кривая) и ОТН (зеленая кривая) осей образца Со(3 нм)/FeMn(5 нм). Вдоль ОЛН амплитуда сигнала резко переключается при смене полярности поля, формируя узкую прямоугольную петлю. Вдоль ОТН изменение амплитуды протекает более плавно: при увеличении поля от отрицательных к положительным значениям амплитуда сначала постепенно уменьшается, затем меняет знак и выходит на насыщение по мере преодоления магнитной анизотропии. Максимальная амплитуда ТГц-сигнала в состоянии насыщения вдоль ОТН демонстрирует вертикальную асимметрию для противоположных направлений поля (черная кривая, рис. 7).

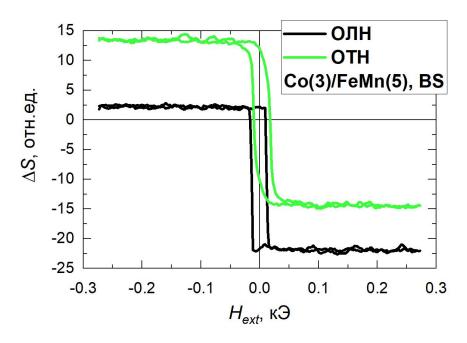


Рис. 7. Петли магнитного гистерезиса ТГц сигнала, генерируемого структурой Co/FeMn при намагничивании вдоль легкой и трудной оси.

Подобная асимметрия может быть следствием влияния антиферромагнитного упорядочения FeMn: при разных направлениях намагниченности Со относительно спинов в FeMn эффективность генерации ТГц сигнала может различаться. Например, при намагничивании Со в одном направлении его обменное взаимодействие с FeMn приводит к большему наклону или движению доменов и усилению динамического отклика (а значит и ТГц-импульса). При намагничивании в излучаемого противоположном наоборот, будет наблюдаться ослабление ТΓц направлении, Наблюдаемая асимметрия переключения абсолютного значения амплитуды ТГцсигнала, выражающаяся как $S(-H_{ext}) \neq S(+H_{ext})$ при перемагничивании вдоль ОЛН, указывает на присутствие дополнительных вкладов в ТГц-генерацию, не связанных с обратным спиновым эффектом Холла, который демонстрирует четную зависимость амплитуды ТГц-сигнала от магнитного поля [31]. Подобное поведение типично для систем с нарушенной инверсионной симметрией на интерфейсе ферромагнетик/немагнитный металл, где возникают четные по намагниченности В ТГц-эмиссию, обусловленные вклады магнитоиндуцированной оптической выпрямляющей нелинейностью второго порядка [32-33].

Заключение

В работе экспериментально показано, что интерфейсная инженерия в структурах на основе графена и антиферромагнетиков определяет как магнитные параметры, так и доминирующие механизмы ТГц-генерации. Для Gr/Co выраженная обнаружена перпендикулярная магнитная анизотропия; неизменность фазы ТГц-сигнала при смене стороны накачки при фиксированном преобладание механизма сверхбыстрого указывает на индуцированного размагничивания. Амплитуда при облучении со стороны подложки возрастает ≈ в 1.5 раза, а при фронтальном облучении снижается ≈ в 2 раза, что согласуется с различиями в оптическом и ТГц-поглощении. В Со/FeMn антиферромагнитный слой задает одноосную анизотропию в плоскости и увеличивает коэрцитивность; инверсия фазы при смене стороны накачки подтверждает доминирование обратного спинового эффекта Холла. Отсутствие обменного смещения при толщине FeMn 5 нм без отжига указывает на необходимость оптимизации толщины и термообработки. Вертикальная асимметрия магнитных петель ТГц-эмиссии свидетельствует о четных по намагниченности вкладах.

Финансирование: Исследование параметров ТГц-спинтронных генераторов было выполнено при поддержке Российского научного фонда (проект № 24-79-10302). Разработка И изготовление спинтронных структур методом магнетронного напыления при поддержке Министерства науки и высшего образования Российской Федерации (проект № FSFZ-2025-0002). Создание и характеризация образцов первичная проводилась c использованием оборудования ЦКП "Физика и технология микро- и наноструктур" (ИФМ РАН).

Литература

- 1. Heimel G., Brédas J.-L. Reflections on charge transport // Nature Nanotechnology.

 2013. T. 8. № 4. C. 230–231. https://doi.org/10.1038/nnano.2013.42
- 2. Horiuchi N. On-chip dual-comb source // Nature Photonics. 2016. T. 10. № 6.
 C. 359. https://doi.org/10.1038/nphoton.2016.115
- 3. Papaioannou E.Th., Beigang R. THz spintronic emitters: a review on achievements and future challenges // Nanophotonics. 2021. T. 10. № 4. C. 1243–1257. https://doi.org/10.1515/nanoph-2020-0563
- 4. Khusyainov D., Ovcharenko S., Gaponov M. et al. Polarization control of THz emission using spin-reorientation transition in spintronic heterostructure // Scientific Reports. 2021. T. 11. № 1. C. 47 54. https://doi.org/10.1038/s41598-020-80781-5
- 5. Kampfrath T., Kirilyuk A., Mangin S. et al. Ultrafast and terahertz spintronics: Guest editorial // Applied Physics Letters. 2023. T. 123. № 5. C. 050001. https://doi.org/10.1063/5.0167151
- 6. Khusyainov D., Ovcharenko S., Buryakov A. et al. Composite Multiferroic Terahertz Emitter: Polarization Control via an Electric Field // Physical Review Applied. 2022. T. 17. № 4. C. 044025. https://doi.org/10.1103/PhysRevApplied.17.044025
- 7. Buryakov A.M., Mishina E.D., Lebedeva E.D. et al. Spin valve as THz emitter providing amplitude modulation // APL Materials. 2024. T. 12. № 10. C. 100–105. https://doi.org/10.1063/5.0221982
- 8. Bull C., Hewett S.M., Ji R. et al. Spintronic terahertz emitters: Status and prospects from a materials perspective // APL Materials. $-2021.-T.9.-N_{\odot}9.$ -C.091114. https://doi.org/10.1063/5.0057511
- 9. Novoselov K.S., Geim A.K., Morozov S.V. et al. Electric Field Effect in Atomically Thin Carbon Films // Science. 2004. T. 306. № 5696. C. 666–669. https://doi.org/10.1126/science.1102896

- 10. Мирзоева Е.Т., Кудрявцев А.В. Первопринципный расчет электронной структуры монослоя CeI₃ // Russian Technological Journal. 2025. Т. 13. № 4. С. 47–54. https://doi.org/10.32362/2500-316X-2025-13-4-47-54
- 11. Eginligil M., Cao B., Wang Z. et al. Dichroic spin-valley photocurrent in monolayer molybdenum disulphide // Nature Communications. 2015. T. 6.
 № 1. C. 8642. https://doi.org/10.1038/ncomms8636
- 12. Mak K.F., He K., Shan J. et al. Control of valley polarization in monolayer MoS2 by optical helicity // Nature Nanotechnology. 2012. T. 7. № 8. C. 494–498. https://doi.org/10.1038/nnano.2012.96
- 13. Estevez-Torres A., Rondelez Y. Spatially localized DNA domino // Nature Nanotechnology. 2017. T. 12. № 9. C. 842–843. https://doi.org/10.1038/nnano.2017.157
- 14. Panda S.N., Majumder S., Choudhury S. et al. Femtosecond laser-induced spin dynamics in single-layer graphene/CoFeB thin films // Nanoscale. 2021. T. 13.
 № 32. C. 13709–13718. https://doi.org/10.1039/d1nr03397b
- 15. Idzuchi H., Iihama S., Shimura M. et al. Spin injection characteristics of Py/graphene/Pt by gigahertz and terahertz magnetization dynamics driven by femtosecond laser pulse // AIP Advances. − 2021. − T. 11. − № 1. − C. 015014. https://doi.org/10.1063/9.0000114
- 16. Cheng L. et al. Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2 // Nature Physics. 2019. T. 15. № 4. C. 347–351. https://doi.org/10.1038/s41567-018-0406-3
- 17. Buryakov A.M., Gorbatova A.V., Avdeev P.Y. et al. Hybrid Co/2D-WSe2-based THz spintronic emitter with tunable polarization // Applied Physics Letters. 2025.
 T. 127. № 5. C. 052402. https://doi.org/10.1063/5.0274793
- 18. Khusyainov D., Guskov A., Ovcharenko S. et al. Increasing the Efficiency of a Spintronic THz Emitter Based on WSe2/FeCo // Materials. 2021. T. 14. № 21. C. 6479. https://doi.org/10.3390/ma14216479

- 19. Schmidt U., Dieing T., Ibach W. et al. A Confocal Raman-AFM Study of Graphene
 // Microscopy Today. 2011. T. 19. № 6. C. 30–33.
 https://doi.org/10.1017/S1551929511001192
- 20. Shi Y., Dong X., Chen P. et al. Effective doping of single-layer graphene from underlying SiO2 substrates // Physical Review B. − 2009. − T. 79. − № 11. − C. 115402. https://doi.org/10.1103/PhysRevB.79.115402
- 21. Berger A.J., Amamou W., White S.P. et al. Magnetization dynamics of cobalt grown on graphene // Journal of Applied Physics. 2014. T. 115. № 17. C. 17C511. https://doi.org/10.1063/1.4864742
- 22. Yang H., Vu A.D., Hallal A. et al. Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt–Graphene Heterostructures // Nano Letters. 2016. T. 16. № 1. C. 145–151. https://doi.org/10.1021/acs.nanolett.5b03392
- 23. Фещенко А.А. и др. Влияние толщины и легирования вольфрамом антиферромагнитных слоев Cr—Mn на микроструктуру и гистерезисные свойства пленок типа Cr—Mn/FM (FM = Fe, Fe₂₀Ni₈₀, Fe₁₀Co₉₀, Fe₆₀Co₂₀B₂₀) // Физика твердого тела. 2025. Т. 67. № 6. С. 1101–1111. https://doi.org/10.61011/FTT.2025.06.60962.19HH-25
- 24. Beaurepaire E., Turner G.M., Harrel S.M. et al. Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses // Applied Physics Letters. 2004. T. 84. № 18. C. 3465–3467. https://doi.org/10.1063/1.1737467
- 25. Буряков А.М., Горбатова А.В., Авдеев П.Ю. et al. Спинтронный терагерцевый эмиттер на основе двумерного полупроводникового диселенида вольфрама // Письма в журнал технической физики. 2022. Т. 48. № 18. С. 19. https://doi.org/10.21883/PJTF.2022.18.53393.19246
- 26. Konschuh S., Gmitra M., Fabian J. Tight-binding theory of the spin-orbit coupling in graphene // Physical Review B. 2010. T. 82. № 24. C. 245412. https://doi.org/10.1103/PhysRevB.82.245412

- 27. Šipr O., Minár J., Mankovsky S. et al. Influence of composition, many-body effects, spin-orbit coupling, and disorder on magnetism of Co-Pt solid-state systems // Physical Review B. − 2008. − T. 78. − № 14. − C. 144403. https://doi.org/10.1103/PhysRevB.78.144403
- 28. Tahir M. et al. Enhancement of spin current to charge current conversion in Ferromagnet/Graphene interface // arXiv preprint arXiv:2404.16595. 2024. https://doi.org/10.48550/arXiv.2404.16595
- 29. Cunha R.O., Garcia-Basabe Y., Larrude D.G. et al. Unraveling the Spin-to-Charge Current Conversion Mechanism and Charge Transfer Dynamics at the Interface of Graphene/WS2 Heterostructures at Room Temperature // ACS Applied Materials & Interfaces. − 2024. − T. 16. − № 2. − C. 2345–2354. https://doi.org/10.1021/acsami.4c08539
- 30. Abdukayumov K., Mičica M., Ibrahim F. et al. Atomic-Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe2 Probed by THz Spintronic Emission // Advanced Materials. 2024. T. 36. № 14. C. 2401243. https://doi.org/10.1002/adma.202304243
- 31. Avdeev P.Y., Gorbatova A.V., Lebedeva E.D. et al. Competing mechanisms of polarization-controlled terahertz emission in Co/Mo spintronic bilayers // Journal of Physics D: Applied Physics. − 2025. − T. 58. − № 38. − C. 385003. https://doi.org/10.1088/1361-6463/ae0345
- 32. Yao Z., Fu H., Du W. et al. Magnetization-induced optical rectification and inverse spin Hall effect for interfacial terahertz generation in metallic heterostructures // Physical Review B. − 2021. − T. 103. − № 20. − C. L201404. https://doi.org/10.1103/PhysRevB.103.L201404
- 33. Jiang Y., Li Z., Li Z. et al. Ultrafast light-driven magneto-optical nonlinearity in ferromagnetic heterostructures // Optics Letters. − 2023. − T. 48. − № 8. − C. 2054–2057. https://doi.org/10.1364/OL.485966

Для цитирования:

Алферьев А.Л., Горбатова А.В., Булавинцева Е.А., Карцев А.И., Климов А.А., Буряков А.М., Гусев Н.С., Сапожников М.В. Спинтронные ТГц эмиттеры на основе графена и антиферромагнетиков // Журнал радиоэлектроники. -2025. -№. 11. https://doi.org/10.30898/1684-1719.2025.11.29