Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹11
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.11.42
OF FIBER BRAGG GRATINGS
FORMED WITH FEMTOSECOND PULSED LASER RADIATION
K.A. Tomyshev, E.I. Dolzhenko, O.V. Butov
Kotelnikov IRE RAS
125009, Russia, Mokhovaya str., 11, b.7
The paper was received September 23, 2025.
Abstract. The paper is devoted to an experimental study regarding spectral characteristics of fiber Bragg gratings formed with pulsed laser with femtosecond-long pulse duration. Such intrafiber Bragg gratings effectively transfer the energy of the core mode to the cladding which is facilitated by the features of the structure. It results in emergence of cladding modes, the parameters of which depend on the refractive index of the external medium, and such is the operating principle of fiber optical refractometers. In the course of the study several unique spectral features were discovered, creating advantageous over other more common fiber solutions, such as tilted fiber Bragg gratings. The most important characteristic is the ultrawide range of observed spectral cut-off, which renders possible to measure refractive indexes from 1 to 1,4. Sensor’s response was demonstrated to linear to high degree over the entire operating range. Possibility of measuring refractive indexes of gases under high pressure, demonstrated with nitrogen as an example, also deserves a special mention. The study’s results clearly show the advantages of femtosecond-inscribed fiber Bragg gratings for the purposes of fiber refractometry.
Key words: femtosecond inscription, Bragg grating, fiber refractometer.
Financing: The research was conducted within the framework of Kotelnikov Institute of Radioengineering and Electronics (IRE) Russian Academy of Sciences (RAS) State Task.
Corresponding author: Dolzhenko Egor Igorevich, dolzhenko@phystech.edu
References
1. Urrutia A. et al. A comprehensive review of optical fiber refractometers: Toward a standard comparative criterion // Laser & Photonics Reviews. – 2019. – Ò. 13. – ¹. 11. – Ñ. 1900094. https://doi.org/10.1002/lpor.201900094
2. Ahsani V. et al. Tapered fiber-optic Mach-Zehnder interferometer for ultra-high sensitivity measurement of refractive index // Sensors. – 2019. – Ò. 19. – ¹. 7. – Ñ. 1652. https://doi.org/10.3390/s19071652
3. de Barros T.H. C. et al. D-shaped optical fiber-based refractometer for olive oil adulteration detection // Food Control. – 2024. – Ò. 166. – Ñ. 110741. https://doi.org/10.1016/j.foodcont.2024.110741
4. Tomyshev K.A. et al. High-resolution fiber optic surface plasmon resonance sensor for biomedical applications // Journal of Applied Physics. – 2018. – Ò. 124. – ¹. 11. https://doi.org/10.1063/1.5045180
5. Dogan Y., Erdogan I. Highly sensitive MoS2/graphene based D-shaped optical fiber SPR refractive index sensor with Ag/Au grated structure // Optical and Quantum Electronics. – 2023. – Ò. 55. – ¹. 12. – Ñ. 1066. https://doi.org/10.1007/s11082-023-05315-5
6. Sudas D.P., Kuznetsov P.I. Tin (IV) Oxide Coatings with Different Morphologies on the Surface of a Thinned Quartz Fiber for Sensor Application // Instruments and Experimental Techniques. – 2023. – Ò. 66. – ¹. 5. – Ñ. 875-880. https://doi.org/10.1134/S0020441223050226
7. Fasseaux H., Caucheteur C., Loyez M. Unraveling Plasmonic Tilted Fiber Bragg Gratings (TFBG): A Journey From “Anomalous Resonances” to Refined Refractometry // Laser & Photonics Reviews. – 2025. – Ò. 19. – ¹. 4. – Ñ. 2400833. https://doi.org/10.1002/lpor.202400833
8. Chiavaioli F. et al. Towards a uniform metrological assessment of grating-based optical fiber sensors: From refractometers to biosensors // Biosensors. – 2017. – Ò. 7. – ¹. 2. – Ñ. 23. https://doi.org/10.3390/bios7020023
9. Nikitov S.A. et al. Tilted fiber Bragg gratings and their sensing applications // Physics-Uspekhi. – 2022. – Ò. 65. – ¹. 12. – Ñ. 1290-1302. https://doi.org/10.3367/UFNe.2021.09.039070
10. Albert J., Shao L.Y., Caucheteur C. Tilted fiber Bragg grating sensors // Laser & Photonics Reviews. – 2013. – Ò. 7. – ¹. 1. – Ñ. 83-108. https://doi.org/10.1002/lpor.201100039
11. Äîëæåíêî Å.È., Òîìûøåâ Ê.À., Áóòîâ Î.Â. Ðåôðàêòîìåòðè÷åñêèé äåòåêòîð áåëêîâ ïëàçìû êðîâè íà îñíîâå íàêëîííîé âîëîêîííîé áðýããîâñêîé ðåøåòêè ñ ôóíêöèîíàëüíûì ïîêðûòèåì èç àíòèòåë [Refractometric Blood Plasma Protein Detector Based On Tilted Fiber Bragg Grating With A Functional Antibody Coating] // Æóðíàë Ðàäèîýëåêòðîíèêè. – 2023. – ¹. 11. https://doi.org/10.30898/1684-1719.2023.11.27
12. Kashyap R. Fiber bragg gratings. – Academic press, 2009. http://dx.doi.org/10.1016/C2009-0-16830-7
13. Mihailov S.J. Fiber Bragg grating sensors for harsh environments // Sensors. – 2012. – Ò. 12. – ¹. 2. – Ñ. 1898-1918. https://doi.org/10.3390/s120201898
14. Przhiialkovskii D.V., Plyuskova N.A., Butov O.V. Formation Dynamics and Possible Nature of Regenerated Fiber Bragg Gratings Inscribed by Femtosecond Laser Radiation // IEEE Sensors Journal. – 2025. – Ò. 25. – ¹. 1. – Ñ. 538-544. https://doi.org/10.1109/JSEN.2024.3494261
15. Ïðæèÿëêîâñêèé Ä.Â., Áóòîâ Î.Â. Âûñîêîòî÷íàÿ çàïèñü âîëîêîííûõ áðýããîâñêèõ ðåøåòîê ïîòî÷å÷íûì ìåòîäîì [High-precision Inscription of Fiber Bragg Gratings via Point-by-Point Method]//Ïðèêëàäíàÿ Ôîòîíèêà Applied Photonics. – 2022. – Ñ. 50.
16. Taylor R., Hnatovsky C., Simova E. Applications of femtosecond laser induced self‐organized planar nanocracks inside fused silica glass // Laser & Photonics Reviews. – 2008. – Ò. 2. – ¹. 1‐2. – Ñ. 26-46. https://doi.org/10.1002/lpor.200710031
17. Martinez A. et al. Photoinduced modifications in fiber gratings inscribed directly by infrared femtosecond irradiation // IEEE photonics technology letters. – 2006. – Ò. 18. – ¹. 21. – Ñ. 2266-2268. https://doi.org/10.1109/LPT.2006.884883
18. Nishii J. et al. Ultraviolet-radiation-induced chemical reactions through one-and two-photon absorption processes in GeO2–SiO2 glasses // Optics Letters. – 1995. – Ò. 20. – ¹. 10. – Ñ. 1184-1186. https://doi.org/10.1364/OL.20.001184
19. Saito K., Ikushima A.J. Absorption edge in silica glass // Physical Review B. – 2000. – Ò. 62. – ¹. 13. – Ñ. 8584. https://doi.org/10.1103/PhysRevB.62.8584
20. Abdukerim N. et al. High-temperature stable fiber Bragg gratings with ultrastrong cladding modes written using the phase mask technique and an infrared femtosecond laser // Optics Letters. – 2020. – Ò. 45. – ¹. 2. – Ñ. 443-446. https://doi.org/10.1364/OL.381111
21. Tomyshev K. et al. Spectral Features of Tilted Fiber Bragg Gratings Inscribed With Femtosecond-Pulse Laser Radiation // IEEE Sensors Journal. – 2024. – Ò. 24. – ¹. 23. – Ñ. 38996-39001. https://doi.org/10.1109/JSEN.2024.3473019
22. Przhiialkovskii D.V., Butov O.V. High-precision point-by-point fiber Bragg grating inscription // Results in Physics. – 2021. – Ò. 30. – Ñ. 104902. http://dx.doi.org/10.1016/j.rinp.2021.104902
23. Johns H.E., Wilhelm J.O. The refractive indices of liquid oxygen, nitrogen, and hydrogen // Canadian Journal of Research. – 1937. – Ò. 15. – ¹. 7. – Ñ. 101-108. https://doi.org/10.1139/cjr37a-013
24. Mathar R.J. Refractive index of humid air in the infrared: model fits // Journal of Optics A: Pure and Applied Optics. – 2007. – Ò. 9. – ¹. 5. – Ñ. 470. http://dx.doi.org/10.1088/1464-4258/9/5/008
25. Haynes W.M. CRC Handbook of Chemistry and Physics. – 2016. http://dx.doi.org/10.1201/9781315380476
26. Saunders J.E. et al. Refractive indices of common solvents and solutions at 1550 nm // Applied optics. – 2016. – Ò. 55. – ¹. 4. – Ñ. 947-953. http://dx.doi.org/10.1364/ao.55.000947
27. Leal-Junior A. et al. Machine learning approach for automated data analysis in tilted FBGs // Optical Fiber Technology. – 2024. – Ò. 84. – Ñ. 103756. https://doi.org/10.1016/j.yofte.2024.103756
28. Tomyshev K. et al. Selective fiber optic TFBG-assisted biosensors featuring functional coatings // Sensors and Actuators B: Chemical. – 2023. – Ò. 384. – Ñ. 133618. https://doi.org/10.1016/j.snb.2023.133618
29. Tomyshev K.A. et al. High-precision data analysis for TFBG-assisted refractometer // Sensors and Actuators A: Physical. – 2020. – Ò. 308. – Ñ. 112016. https://doi.org/10.1016/j.sna.2020.112016
For citation:
Tomyshev K.A., Dolzhenko E.I., Butov O.V. Refractometric applications of Fiber Bragg Gratings formed with femtosecond pulsed laser radiation // Journal of Radio Electronics. – 2025. – ¹ 11. https://doi.org/10.30898/1684-1719.2025.11.42 (In Russian)