Journal of Radio Electronics. eISSN 1684-1719. 2025. №11

Contents

Full text in Russian (pdf)

Russian page

 

 

DOI: https://doi.org/10.30898/1684-1719.2025.11.48

 

 

 

INFLUENCE OF FIELD COOLING HEIGHT
ON THE LEVITATION CHARACTERISTICS OF AN HTS TAPE STACK

 

I.V. Martirosian, D.A. Aleksandrov, A.S. Starikovskii, M.A. Osipov, S.V. Pokrovsky

 

National Research Nuclear University, Moscow Engineering Physics Institute,
115409, Russia, Moscow, Kashirskoye Shosse, 31

 

The paper was received October 30, 2025.

 

Abstract. Contactless magnetic suspensions based on high-temperature superconductors (HTS) are of particular interest due to their ability to provide stable levitation without active control systems. One of the key factors affecting the performance of such systems is the field cooling height (FCH), which determines the distribution of the trapped magnetic flux and, consequently, the magnitude and stability of the levitation forces. The aim of this work is to experimentally and numerically investigate the effect of FCH on the vertical and lateral characteristics of a simple HTS suspension. The object of study is a basic configuration of an HTS suspension consisting of a stack of composite YBCO HTS tapes and a stack of cylindrical NdFeB permanent magnets. Experiments were carried out during cooling with liquid nitrogen for various FCH values in the range of 6–60 mm. Numerical simulations were performed using the finite element method in the A–T formulation with identical geometric parameters. Vertical and lateral load characteristics of the HTS suspension were obtained. It was found that the maximum vertical levitation force increases nonlinearly with FCH, while the maximum restoring force under lateral displacement decreases. A pronounced inverse correlation between these forces was observed. The identified dependencies reflect the balance between the load-bearing capacity and stability of the suspension, determined by the interaction of the superconductor with the non-uniform magnetic field. The obtained results can be used to optimize the parameters of HTS bearings, supports, and transport platforms, as well as to develop new methods for controlling their levitation characteristics.

Key words: levitation force, HTS tape stacks, HTS bearing, HTS suspension, HTS composites, field cooling height, FCH.

Financing: This study was supported by the Russian Science Foundation, project No. 23-19-00394, https://rscf.ru/project/23-19-00394/

Corresponding author: Martirosian Irina Valerievna, mephizic@gmail.com

References

1. Slininger T. S., et al. An Overview on Passive Magnetic Bearings // 2021 IEEE International Electric Machines & Drives Conference (IEMDC), 2021. ‒ C. 1-8. https://doi.org/10.1109/IEMDC47953.2021.9449571

2. Huang T., Zheng M., Zhang G. A Review of Active Magnetic Bearing Control Technology // 2019 Chinese Control And Decision Conference (CCDC), 2019. ‒ C. 2888-2893. https://doi.org/10.1109/CCDC.2019.8833062

3. Supreeth D. K., et al. A Review of Superconducting Magnetic Bearings and Their Application // IEEE Transactions on Applied Superconductivity. ‒ 2022. ‒ T. 32, № 3. ‒ C. 1-15. https://doi.org/10.1109/TASC.2022.3156813

4. Namburi D. K., Shi Y., Cardwell D. A. The processing and properties of bulk (RE) BCO high temperature superconductors: current status and future perspectives // Superconductor Science and Technology. ‒ 2021. ‒ T. 34, № 5. ‒ C. 053002. https://doi.org/10.1088/1361-6668/abde88

5. Hussein A. A. A., Hussein A. M. A., Hasan N. A. Study of the properties of YBCO superconductor compound in various preparation methods: a short review // Journal of Applied Sciences and Nanotechnology. ‒ 2023. ‒ T. 3, № 1. ‒ C. 65-79. https://doi.org/10.53293/jasn.2022.4867.1156

6. Ogawa N., Hirabayashi I., Tanaka S. Preparation of a high-Jc YBCO bulk superconductor by the platinum doped melt growth method // Physica C: Superconductivity. ‒ 1991. ‒ T. 177, № 1. ‒ C. 101-105. https://doi.org/10.1016/0921-4534(91)90304-H

7. Sass F., et al. Superconducting magnetic bearings with bulks and 2G HTS stacks: comparison between simulations using H and A-V formulations with measurements // Superconductor Science and Technology. ‒ 2018. ‒ T. 31, № 2. ‒ C. 025006. https://doi.org/10.1088/1361-6668/aa9dc1

8. Osipov M., et al. Scalable superconductive magnetic bearing based on non-closed CC tapes windings // Superconductor Science and Technology. ‒ 2021. ‒ T. 34, № 3. ‒ C. 035033. https://doi.org/10.1088/1361-6668/abda5a

9. Coombs T. A., et al. High-temperature superconductors and their large-scale applications // Nature Reviews Electrical Engineering. ‒ 2024. ‒ T. 1, № 12. ‒ C. 788-801. https://doi.org/10.1038/s44287-024-00112-y

10. Kurbatova E., et al. Comparison of properties of a bulk HTS and a stack of HTS tapes after FC and ZFC // Journal of Physics: Conference Series. ‒ 2020. ‒ T. 1559, № 1. ‒ C. 012049. https://doi.org/10.1088/1742-6596/1559/1/012049

11. Mukoyama S., et al. Development of superconducting magnetic bearing for 300 kW flywheel energy storage system // IEEE Transactions on Applied Superconductivity. ‒ 2017. ‒ T. 27, № 4. ‒ C. 1-4. https://doi.org/10.1109/TASC.2017.2652327

12. Miyazaki Y., et al. Development of superconducting magnetic bearing for flywheel energy storage system // Cryogenics. ‒ 2016. ‒ T. 80. ‒ C. 234-237. https://doi.org/10.1016/j.cryogenics.2016.05.011

13. Oliveira R., et al. HTS-tape magnetic bearing for ultra high-speed turbo motor // IEEE Transactions on Applied Superconductivity. ‒ 2023. ‒ T. 33, № 5. ‒ C. 1-5. https://doi.org/10.1109/TASC.2023.3253064

14. Kummeth P., et al. Development and characterization of magnetic HTS bearings for a 400 kW synchronousHTS motor // Superconductor Science and Technology. ‒ 2004. ‒ T. 17, № 5. ‒ C. S259. https://doi.org/10.1088/0953-2048/17/5/032

15. Yang W., et al. Low frequency rotational loss in a high-temperature superconducting bearing and its application in micro-thrust measurement for space propulsion // Superconductor Science and Technology. ‒ 2019. ‒ T. 33, № 1. ‒ C. 014001. https://doi.org/10.1088/1361-6668/ab58b9

16. Sakurai Y., et al. Half-meter scale superconducting magnetic bearing for cosmic microwave background polarization experiments // Journal of Physics: Conference Series ‒ T. 1590. ‒ C. 012060. https://doi.org/10.1088/1742-6596/1590/1/012060

17. Ye M., et al. Effect of temperature on rotation loss in a superconducting device for microthrust measurement of electric propulsion system // IEEE Transactions on Applied Superconductivity. ‒ 2015. ‒ T. 25, № 3. ‒ C. 1-4. https://doi.org/10.1109/TASC.2015.2393555

18. Gao L., et al. High-Temperature Superconducting Magnetic Levitation With the Halbach Array and V-Shaped Combined Permanent Magnet Guideway // IEEE Transactions on Applied Superconductivity. ‒ 2024. ‒ T. 34, № 7. ‒ C. 1-8. https://doi.org/10.1109/TASC.2024.3432110

19. Ozturk K., et al. Experimental and Numerical Investigation of Levitation Force Parameters of Novel Multisurface Halbach HTS–PMG Arrangement for Superconducting Maglev System // IEEE Transactions on Applied Superconductivity. ‒ 2021. ‒ T. 31, № 7. ‒ C. 1-12. https://doi.org/10.1109/TASC.2021.3106816

20. Irina A., et al. Modeling of magnetization and levitation force of HTS tapes in magnetic fields of complex configurations // Superconductor Science and Technology. ‒ 2019. ‒ T. 32, № 10. ‒ C. 105001. https://doi.org/10.1088/1361-6668/ab2bbe

21. Rudnev I., et al. The influence of cyclical lateral displacements on levitation and guidance force for the system of coated conductor stacks and permanent magnets // Materials Research Express. ‒ 2019. ‒ T. 6, № 3. ‒ C. 036001. https://doi.org/10.1088/2053-1591/aaf7ae

22. Osipov M., et al. Investigation of HTS Tape Stacks for Levitation Applications // IEEE Transactions on Applied Superconductivity. ‒ 2016. ‒ T. 26, № 4. ‒ C. 1-1. https://doi.org/10.1109/TASC.2016.2541610

23. Osipov M., et al. Influence of temperature on levitation characteristics of the system CC tapes – Permanent magnets at lateral displacements // Journal of Magnetism and Magnetic Materials. ‒ 2022. ‒ T. 546. ‒ C. 168896. https://doi.org/10.1016/j.jmmm.2021.168896

24. Suzuki T., et al. Temperature Dependency of Levitation Force and Its Relaxation in HTS // IEEE Transactions on Applied Superconductivity. ‒ 2007. ‒ T. 17, № 2. ‒ C. 3020-3023. https://doi.org/10.1109/TASC.2007.899403

25. Erdem O., et al. Effects of Initial Cooling Conditions and Measurement Heights on the Levitation Performance of Bulk MgB$$_{2}$$Superconductor at Different Measurement Temperatures // Journal of Low Temperature Physics. ‒ 2014. ‒ T. 177, № 1. ‒ C. 28-39. https://doi.org/10.1007/s10909-014-1183-8

26. Abdioglu M., et al. Levitation and guidance force efficiencies of bulk YBCO for different permanent magnetic guideways // Journal of Alloys and Compounds. ‒ 2015. ‒ T. 630. ‒ C. 260-265. https://doi.org/10.1016/j.jallcom.2015.01.044

27. Zheng X., Yang Y. Transition Cooling Height of High-Temperature Superconductor Levitation System // IEEE Transactions on Applied Superconductivity. ‒ 2007. ‒ T. 17, № 4. ‒ C. 3862-3866. https://doi.org/10.1109/TASC.2007.910150

28. Molodyk A., et al. Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion // Scientific Reports. ‒ 2021. ‒ T. 11, № 1. ‒ C. 2084. https://doi.org/10.1038/s41598-021-81559-z

29. Lee S., et al. Development and production of second generation high Tc superconducting tapes at SuperOx and first tests of model cables // Superconductor Science and Technology. ‒ 2014. ‒ T. 27. ‒ C. 044022. https://doi.org/10.1088/0953-2048/27/4/044022

30. Ghabeli A., et al. 3D modeling and measurement of HTS tape stacks in linear superconducting magnetic bearings // Superconductor Science and Technology. ‒ 2024. ‒ T. 37, № 6. ‒ C. 065003. https://doi.org/10.1088/1361-6668/ad3c9a

31. Huber F., et al. The T-A formulation: an efficient approach to model the macroscopic electromagnetic behaviour of HTS coated conductor applications // Superconductor Science and Technology. ‒ 2022. ‒ T. 35, № 4. ‒ C. 043003. https://doi.org/10.1088/1361-6668/ac5163

32. Pokrovskii S. V., Martirosian I. V., Aleksandrov D. A. Numerical 3D modeling of magnetic systems based on closed superconducting rings // Modern Transportation Systems and Technologies. ‒ 2024. ‒ T. 10, № 4. ‒ C. 537-555. https://doi.org/10.17816/transsyst637429

33. Molodyk A., et al. Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion // Scientific Reports. ‒ 2021. ‒ T. 11. https://doi.org/10.1038/s41598-021-81559-z

34. Ahlers G. Heat Capacity of Copper // Review of Scientific Instruments. ‒ 1966. ‒ T. 37, № 4. ‒ C. 477-480. https://doi.org/10.1063/1.1720219

35. Bonura M., Senatore C. High-field thermal transport properties of REBCO coated conductors // Superconductor Science and Technology. ‒ 2015. ‒ T. 28, № 2. ‒ C. 025001. https://doi.org/10.1088/0953-2048/28/2/025001

36. Ikebe M., et al. Anisotropic Thermal Diffusivity and Conductivity of YBCO(123) and YBCO(211) Mixed Crystals. II // Japanese Journal of Applied Physics. ‒ 1994. ‒ T. 33, № 11R. ‒ C. 6157. https://doi.org/10.1143/JJAP.33.6157

37. Matula R. A. Electrical resistivity of copper, gold, palladium, and silver // Journal of Physical and Chemical Reference Data. ‒ 1979. ‒ T. 8, № 4. ‒ C. 1147-1298. https://doi.org/10.1063/1.555614

38. Smith D., Fickett F. R. Low-Temperature Properties of Silver // Journal of Research of the National Institute of Standards and Technology. ‒ 1995. ‒ T. 100. https://doi.org/10.6028/jres.100.012

39. Zou S., Zermeño V. M. R., Grilli F. Simulation of Stacks of High-Temperature Superconducting Coated Conductors Magnetized by Pulsed Field Magnetization Using Controlled Magnetic Density Distribution Coils // IEEE Transactions on Applied Superconductivity. ‒ 2016. ‒ T. 26, № 3. ‒ C. 1-5. https://doi.org/10.1109/TASC.2016.2520210

40. Van Nugteren J. Normal zone propagation in a YBCO superconducting tape // University of Twente: Enschede, The Netherlands. ‒ 2012.

41. Zubko V. V., et al. Heat Transfer Simulation to Liquid Nitrogen from HTS Tapes at the Overload Currents // Physics Procedia. ‒ 2015. ‒ T. 67. ‒ C. 619-624. https://doi.org/10.1016/j.phpro.2015.06.105

For citation:

Martirosian I.V., Aleksandrov D.A., Starikovskii A.S., Osipov M.A., Pokrovsky S.V. Influence of field cooling height on the levitation characteristics of an HTS tape stack. // Journal of Radio Electronics. – 2025. – №. 11. https://doi.org/10.30898/1684-1719.2025.11.48 (In Russian)