Journal of Radio Electronics. eISSN 1684-1719. 2025. ¹11
Full text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2025.11.6
17th International Conference
Gas Discharge Plasmas and Their Applications
Ekaterinburg, Russia, 8-12 September 2025
METHODS OF TRIGGERING
FOR PSEUDOSPARK SWITCH WITH THE TRIGGER UNIT
BASED ON AN AUXILIARY GLOW DISCHARGE
N.V. Landl, Y.D. Korolev, O.B. Frants, A.V. Bolotov, V.O. Nekhoroshev
Institute of High Current Electronics of RAS,
634055, Russia, Tomsk, Akademichesky Ave., 2/3
The paper was received October 2, 2025.
Abstract. The present paper deals with the study of methods of triggering for the sealed-off pseudospark switch with a trigger unit based on an auxiliary glow discharge in conditions when the trigger pulse has a negative polarity. It is shown that the power supply scheme for auxiliary discharge sustainment and regimes of the discharge have a significant effect on the delay time of the switch triggering time relative to the instant of trigger pulse application and jitter. The causes of this effect are explained. The trigger schemes and auxiliary discharge power schemes, for which nanosecond stability of the switch operation is provided, have been revealed.
Key words: pseudospark switch, hollow-cathode discharge, glow discharge.
Financing: This work was supported by the Russian Science Foundation grant No. 25-19-00405, https://rscf.ru/en/project/25-19-00405/.
Corresponding author: Landl Nikolay Vladimirovich, landl@lnp.hcei.tsc.ru
References
1. Korolev Y. D., Koval N. N. Low-pressure discharges with hollow cathode and hollow anode and their applications // J. Phys. D: Appl. Phys. – 2018. – V. 51. – P. 323001. https://doi.org/10.1088/1361-6463/aacf10
2. Denisov V. V., Akhmadeev Y. H., Koval N. N. et al. The source of volume beam-plasma formations based on a high-current non-self-sustained glow discharge with a large hollow cathode // Phys. Plasmas. – 2019. – V. 26. – P. 123510. https://doi.org/10.1063/1.5126485
3. Abe S., Takahashi K., Mukaigawa S. et al. Comparison of plasma characteristics of high-power pulsed sputtering glow discharge and hollow-cathode discharge // Japan. J. Appl. Phys. – 2021. – V. 60. – P. 015501. https://doi.org/10.35848/1347-4065/abcd78
4. Koval N. N., Devyatkov V. N., Vorobyev M. S. Electron Sources with Plasma Grid Emitters: Progress and Prospects // Russ. Phys. J. – 2021. – V. 63. – P. 1651-1660. https://doi.org/10.1007/s11182-021-02219-3
5. Akishev Y., Aponin G., Karalnik V. et al. Three-electrode strongly overvoltage open discharge in D2 as an effective source of the high-current beam of runaway electrons with energy up to 25 keV // J. Phys. D: Appl. Phys. – 2018. – V. 51. – P. 394003. https://doi.org/10.1088/1361-6463/aad704
6. Akishev Y., Balakirev A., Karal'nik V. et al. On the Mechanism of Maintenance and Instability of the Overvoltage Low-Pressure Discharge Forming a High-Current Runaway Electron Beam // Russ. Phys. J. – 2017. – V 60. P. 1341-1345. https://doi.org/10.1007/s11182-017-1219-z
7. Sarkar M., Kumar N. Pseudospark Discharge-Based Electron Beam Sources: A Review // IEEE Trans. Plasma Sci. – 2024. – V. 52. – ¹ 6. – P. 1966-1982. https://doi.org/10.1109/TPS.2024.3418467
8. Ryabchikov A. I., Dektyarev S. V., Korneva O. S. et al. Features of the Formation of Ultralow Energy High-Intensity Metal and Gaseous Ion Beams // IEEE Trans. Plasma Sci. – 2021. – V. 49. P. 2559-2566. https://doi.org/10.1109/TPS.2021.3083327
9. Qu D., Bleiner D. Extreme ultraviolet plasma spectroscopy of a pseudospark XUV source // J. Anal. At. Spectrom. – 2022. – V. 35. – ¹ 9. P. 2011-2022. https://doi.org/10.1039/D0JA00215A
10. Bergmann K., Vieker J., Wezyk A. Investigations on the emission in the extreme ultraviolet of a pseudospark based discharge light source // J. Appl. Phys. – 2016. – V. 120. – ¹ 14. – P. 143302. https://doi.org/10.1063/1.4964800
11. Rizakhanov R. N. Method for calculating an electron gun forming an axially symmetric beam // Journal of Radio Electronics. – 2024. – ¹ 12. https://doi.org/10.30898/1684-1719.2024.12.16
12. Zaharov A. A., Potapov A. A., Shvachko A. A. Influence of electron temperature on the distribution of the concentration in the cross section of a gas-discharge plasma. Zhurnal radioelektroniki. V, 2022. – ¹2. https://doi.org/10.30898/1684-1719.2022.2.3 (In Russian)
13. Bankovsky A. S., Zaharov A. A., Potapov A. A., Shvachko A. A. Influence of heat flows in a gas discharge plasma on its electric properties. Zhurnal Radioelektroniki. – 2021. – ¹ 7. https://doi.org/10.30898/1684-1719.2021.7.2 (In Russian)
14. Lamba R. P., Pal U. N., Meena B. L. et al. A sealed-off double-gap pseudospark switch and its performance analysis // Plasma Sources Sci. Technol. – 2018. – V. 27. – ¹ 3. – P. 035003. https://doi.org/10.1088/1361-6595/aaab80
15. Yan J., Shen S., Ding W. et al. A Miniaturized Sealed-Off Double-Gap Pseudospark Switch for High Power and High Repetition Rate Pulsed Discharge Applications // IEEE Trans. Ind. Appl. – 2023. – V. 59. – ¹ 3. P. 3056-3066. https://doi.org/10.1109/TIA.2023.3247401
16. Korolev Y. D., Landl N. V., Frants O. B. et al. A sealed-off pseudospark switch with nanosecond stability of triggering // IEEE Trans. Electron Devices. – 2021. – V. 68. – ¹ 9. – P. 4692-4697. https://doi.org/10.1109/TED.2021.3096182
17. Mishra A., Meena B. L., Lamba R. P. et al. Performance Evaluation of Ferroelectric Trigger Unit for Multigap Multiaperture Pseudospark Switch // IEEE Trans. Plasma Sci. – 2024. – V. 52. – ¹ 9. P. 4606-4612. https://doi.org/10.1109/TPS.2024.3458997
18. Mehr T., Arentz H., Bickel P. et al. Trigger devices for pseudospark switches // IEEE Trans. Plasma Sci. – 1995. – V. 23. – ¹ 3. – P. 324-329. https://doi.org/10.1109/27.402320
19. Sozer E. B., Gundersen M. A., Jiang C. Q. Magnesium-based photocathodes for back-lighted thyratrons // IEEE Trans. Plasma Sci. – 2012. – V. 40. – ¹ 6. – P. 1753-1758. https://doi.org/10.1109/TPS.2012.2190829
20. Landl N. V., Korolev Y. D., Frants O. B. et al. Discharge formation in a trigger unit based on a breakdown over the dielectric surface in a cold-cathode thyratron // Rus. Phys. J. – 2022. – V. 65. – ¹ 2. – P. 347–354. https://doi.org/10.1007/s11182-022-02642-0
21. Korolev Y. D., Landl N. V., Frants O. B. et al. Mechanism of triggering for the pseudospark switch with a trigger unit based on surface discharge // Bulletin of the Russian Academy of Sciences: Physics. – 2023. – V. 87. – P. S257–S261. https://doi.org/10.1134/S1062873823704713
22. Korolev Y. D., Landl N. V., Frants O. B. et al. Study of trigger mechanisms of a pseudospark switch configuration with a steady-state auxiliary glow discharge // Physics of Plasmas. – 2023. – V. 30. – P. 093501. https://doi.org/10.1063/5.0155949
23. Korolev Y. D., Landl N. V., Frants O. B. et al. Operating modes in a low-pressure glow discharge with hollow cathode // Plasma Sources Sci. Technol. – 2022. – V. 31. – ¹ 7. – P. 074002. https://doi.org/10.1088/1361-6595/ac7902
For citation:
Landl N.V., Korolev Y.D., Frants O.B., Bolotov A.V., Nekhoroshev V.O. Methods of triggering for pseudospark switch with the trigger unit based on an auxiliary glow. // Journal of Radio Electronics. – 2025. – ¹. 11. https://doi.org/10.30898/1684-1719.2025.11.6 (In Russian)