"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 10, 2019

contents of issue      DOI  10.30898/1684-1719.2019.10.1     full text in Russian (pdf)  

UDC 621.369.9

Entropy models and reference descriptions of error-correcting codes

 

K. B. Makhrov, V .O. Khatsayuk

Mozhaisky Military Space Academy, Zhdanovskaya 13, St. Petersburg 197198, Russia
 

The paper is received on September 16, 2019

 

Abstract. In this work, we make a look at the actual problems of blind recognition of error-correcting codes in non-cooperative context, assuming non-binary modulation and no manipulation code knowledge. In particular, we propose a novel analytical model that reflects the dependence of introduced redundancy on the error-correcting code parameters and allows making compact mapping-invariant signatures of different error-correcting codes. Proposed approach to codes identification provides a reduction in feature space, computational complexity and the required sample size compared to known statistical methods. The simulation results confirm the viability of the proposed model for blind recognition of error-correcting codes.

Key words: cognitive radio, blind recognition, error-correcting codes, coded modulation.

References

1.     Zamarin A.I., Atakishchev O.I., Tavalinsky D.A., Ryumshin K.Y. Post-detector technical analysis of digital sequences in the identification of complex structures. Izvestiia yugo-zapadnogo gosudarstvennogo universitetaNews of southwestern state university, 2014, No. 1. (52), pp. 14–21. (In Russian).

2.     Grigoryev V.A., Grigoryev S.V. Signal’no-kodovye konstrukcii. [Coded modulation]. St.-Petersburg, Military Academy of Signal Communication Publ. 1997. 147 p. (In Russian).

3.     Baushev S.V., Zaycev I.E., Yakovlev A.A. Prospects for the development of coded modulation for a Gaussian channel. Zarubezhnaya radioelektronika – Foreign electronics, 1990. No. 1, pp.15 – 31. (In Russian).

4.     Kadukov E.P. A model of radio signals with continuous phase modulation based on the parameters of phase diagrams and a set of informative features for recognizing types of modulation of radiation from foreign satellite communication systems. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 7. Available at http://jre.cplire.ru/jre/jul19/12/text.pdf DOI 10.30898/1684-1719.2019.7.12 (In Russian).

5.     Marazin M., Gautier R., Burel G. Dual Code Method for Blind Identification of Convolutional Encoder for Cognitive Radio Receiver Design. 2009 IEEE Globecom Workshops, Honolulu, HI, 2009, pp. 1-6 DOI 10.1109/GLOCOMW.2009.5360726.

6.     Zrelli Y., Marazin M., Rannou E., Gautier R. Blind Identification of Convolutional Encoder Parameters over GF(2m) in the Noiseless Case. Computer Communications and Networks (ICCCN) 2011 Proceedings of 20th International Conference on, 2011, pp. 1-5.

7.     Xie H., Chai X., Wang F., Huang Z. A method for blind identification of rate 1/2 convolutional code based on improved Euclidean algorithm. Signal Processing (ICSP) 2012 IEEE 11th International Conference on, 2012, Vol. 2, pp. 1307-1310.

8.     Barinov A.Y. Interleaving in channel coding: properties, structure, applications. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 1. Available at http://jre.cplire.ru/jre/jan19/13/text.pdf DOI 10.30898/1684-1719.2019.1.13 (In Russian).

9.     Ratushin A.P., Rachinsky E.V., Balunin E.I. Informative features for recognition of continuous error-correcting codes in discrete sequences. Naukoemkie tehnologii – High technology, 2010, No. 9, pp. 14–21. (In Russian).

10.  Sicot G., Houcke S. Etude statistique du seuil dans la detection d’entrelaceur. Proc. GRETSI 2005, Belgium, pp. 231-254.

11.  Bellard M., Tillich J.P. Detecting and reconstructing an unknown convolutional code by counting collisions. 2014 IEEE International Symposium on Information Theory (ISIT 2014), pp. 2967-2971.

12.  Rukhin A., Soto J. A statistical test suite for random and pseudorandom number generators for cryptographic application, Revision1a, USA Special Publication 800-22. Accessed 2019. Available at: http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf.

13.  MacKay D. Information Theory, Inference, and Learning Algorithms.  Cambridge University Press, 2003. 640 p.

14.  Rosenthal J. Connections between linear systems and convolutional codes. Codes, Systems and Graphical Models. The IMA Volumes in Mathematics and its Applications, 2001, Vol. 123, pp. 39 – 66.

15.  Massey James L. Threshold Decoding. Cambridge, Massachusetts: M.I.T. Press, 1963. 129 p.

 

For citation:

K.B. Makhrov, V.O.Khatsayuk. Entropy models and reference descriptions of error-correcting codes. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 10. Available at http://jre.cplire.ru/jre/oct19/1/text.pdf

DOI  10.30898/1684-1719.2019.10.1