УДК 537.9

МНОГОСЛОЙНЫЕ СТРУКТУРЫ НА ОСНОВЕ УГЛЕРОДНЫХ НАНОСТЕНОК И НИТРИДА АЛЮМИНИЯ В АВТОЭМИССИОННЫХ КАТОДАХ

С. А. Багдасарян¹, С. А. Налимов², А. И. Юрин³, Е. Р. Павлюкова⁴

¹ Научно-производственное предприятие "Технологии радиочастотной идентификации и связи", 127051, Москва, Сухаревская пл. 4, стр. 1 ² Центральный научно-исследовательский технологический институт "Техномаш", 121108, Москва, ул. Ивана Франко, 4 ³ Национальный исследовательский университет "Высшая школа экономики", 123592, Москва, ул. Таллиннская, 34 ⁴ Московский физико-технический институт (государственный университет), 141701, Долгопрудный, Институтский переулок, 9

Статья поступила в редакцию 22 октября 2019 г.

Аннотация. Рассмотрено влияние условий формирования на строение углеродных наностенок (C_H) и пленок AlN, используемых в качестве эмитирующего слоя автоэмиссионных катодов. Слои С_н получали на кремниевых подложках и опаловых матрицах (упорядоченных упаковках шаровых частиц кремнезема) методом активированной тлеющим разрядом постоянного тока углеродсодержащей газовой смеси. Для снижения порога эмиссии на ростовой поверхности слоев С_н методом ВЧ-магнетронного реактивного распыления выращивали наноструктурированные пленки AlN (структуры $C_{\rm H}/{\rm AlN}$). Электронной микроскопией, рентгеновской дифрактометрией и спектроскопией комбинационного рассеяния света показано, что пластины C_H состоят из слоев графена, а пленки AlN – из аморфной и аксиально текстурированной кристаллической фаз. Представлены результаты исследования связи строения слоев C_H и структур C_H/AlN с функциональными характеристиками автоэмиссионных катодов.

Ключевые слова: углеродные наностенки, пленки нитрида алюминия, слоистые структуры, автоэмиссионные катоды.

Abstract. The influence of formation conditions on the structure of carbon nanowalls (CH) and AlN films used as an emitting layer of field emission cathodes is

ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, ISSN 1684-1719, N10, 2019

researched. CH layers were obtained on silicon substrates and opal matrices (ordered packings of silica spherical particles) by the method of a carbon-containing gas mixture activated by a direct current glow discharge. To decrease the emission threshold, nanostructured AlN films (CH / AlN structures) were grown on the growth surface of CH layers by the method of RF magnetron reactive sputtering. Electron microscopy, X-ray diffractometry and Raman spectroscopy results demonstrated that CH plates consist of graphene layers, and AlN films consist of amorphous and axially textured crystalline phases. The results of a study of the relationship between the structure of CH layers and CH / AlN structures with the functional characteristics of field emission cathodes are presented.

Keywords: carbon nanowalls, aluminum nitride films, layered structures, field emission cathodes.

Введение

В промышленности все большее значение приобретают не массивные материалы, а пленки, позволяющие добиваться улучшения функциональных свойств материалов и эксплуатационных характеристик устройств на их основе за счет варьирования состава и строения слоистых структур. Для изготовления устройств электронной техники перспективны слоистые структуры на основе алмазоподобных неуглеродных материалов, углеродных и обладающих свойств. К алмазоподобным неуглеродным комплексом уникальных материалам относится AlN, близкий к алмазу по ряду физико-химических свойств. Алмаз и AlN являются широкозонными полупроводниковыми материалами, обладают высокой твердостью и теплопроводностью, а в виде слоистой структуры алмаз/AlN перспективны для создания устройств акустоэлектроники и полупроводниковых приборов [1-3]. AlN и углеродные материалы, такие как алмазоподобный углерод и углеродные наностенки (C_H)), обладают свойством автоэлектронной эмиссии и находят применение в автоэмиссионных катодах [4, 5]. Исследования последних лет показали перспективность слоев С_Н при изготовлении автоэмиссионных катодов,

применяющихся при создании дисплеев и других устройств [6, 7]. Слои C_H представляют собой пористый углеродный материал, состоящий из изогнутых пластин, сформированных слоями графена [8]. Проблемы применения C_H в автоэмиссионных катодах связаны с нестабильностью эмиссионных параметров из-за изменения строения и состава C_H в процессе эксплуатации [8]. Для улучшения характеристик автоэмиссионных катодов на поверхности эмитирующих материалов выращивали пленку AlN [4, 9–11]. Широкое применение устройств, включающих в качестве функциональных сред пленки AlN, сдерживается сложностью синтеза пленок заданного строения.

Цель работы – исследование взаимосвязи условий синтеза слоев C_H и пленок AlN с их строением и свойствами при изготовлении автоэмиссионных катодов.

1. Методика эксперимента

Получение С_н. Слои С_н выращивали из газовой смеси H₂ и CH₄, активированной тлеющим разрядом постоянного тока [9]. Перед наращиванием С_Н на подложках из Si (структура Si/C_H) создавались затравочные углеродные затравочных Параметры процесса создания наночастицы. углеродных наночастиц следующие: при температуре ~1020 К поверхность подложки из Si бомбардировали ионами H⁺ и C_XH_y⁺ (ВЧ-разряд, частота 13,56 МГц, мощность разряда 40 Вт, время обработки 20 мин), образовавшимися в СВЧ-плазме H₂ + (8–10)% CH₄ (по объему) при давлении ~10⁴ Па. Слои С_н выращивали при следующих параметрах тлеющего разряда постоянного тока: состав газа $H_2 + (1.5-4)$ об.% CH₄; давление газа > 10⁴ Па; мощность разряда 2000-5000 Вт; температура подложки 800–1300 К. Слои С_н толщиной > 4 мкм формировали последовательным наращиванием двух слоев C_H (структура Si/C_H-2). Второй слой С_н также выращивали на первом, покрытом пленкой Ni (структура Si/C_H/Ni/C_H). Максимальная толщина двухслойной структуры составляла ~9 мкм.

Слои С_н выращивали также на подложках, представляющих слоистую структуру, изготовленную формированием слоя опаловой матрицы (OM) на

подложке из Si (структура Si/OM). ОМ представляют плотнейшую упаковку шаровых частиц диаметром ~250–260 нм аморфного SiO₂ [**12**]. Слой ОМ на поверхности подложек из Si осаждали из раствора $NH_3 \cdot H_2O$, C_2H_5OH и Si(OC_2H_5)₄ [13]. Изготовленные автоэмиссионные катоды представляли подложку из Si с нанесенными на нее 8–10 слоев ОМ. Для подвода заряда к C_H на поверхность ОМ магнетронным распылением наносили пленку Ni (структура Si/OM/Ni/C_H).

Получение пленок AIN. Пленки AIN выращивали методом ВЧмагнетронного реактивного распыления А1 при следующих условиях: состав газа – Ar + (40-60) об.% N₂; давление газа в реакционной камере 0,7-0,9 Па; напряжение ВЧ-разряда (частота 13,56 МГц) 250–350 В; мощность ВЧ-разряда 0,5-2,5 кВт; расстояние между мишенью и подложкой 60 мм; температура подложки 400–750 K; напряжение электрического смещения на +45 – -60 B. Легированные подложкодержателе цинком (AlN_{Zn}) или молибденом (AlN_{Mo}) пленки получали распылением мозаичных мишеней, состоящих из Al с добавками Zn или Mo. Пленки AlN были выращены на слое С_н (структуры Si/C_H/AlN) и на многослойных структурах со слоем ОМ $(Si/OM/Ni/C_H/AlN).$

Методы исследования строения материалов слоистых И характеристик автоэмиссионных катодов на основе слоев C_H и пленок AlN. Строение и состав слоев C_H и пленок AlN анализировали с использованием растрового и просвечивающего электронных микроскопов (РЭМ и ПЭМ) Carl Zeiss Supra 40-30-87 и JEM 200С; лазерного спектрометра комбинационного рассеяния света (КРС) LabRAM HR 800 (линия 632,8 нм He-Ne лазера; мощность лазера < 300 мВт; площадь исследуемой поверхности образца ~4- 6 MKM^2 . анализируемая глубина образца от поверхности ~3 мкм) и рентгеновского дифрактометра Rigaku D/MAX-2500/PC (Cuk_α-излучение, графитовый монохроматор).

Характеристики автоэмиссионных катодов на основе слоистых структур измеряли в импульсном и постоянном режимах в вакуумной камере

измерительной установки при давления ~ 10^{-3} Па. Анодом являлась пластина из нержавеющей стали или Сu. Для оценки числа эмиссионных центров анод измерительной ячейки заменялся стеклом K-8 с нанесенной слоистой структурой InSnO_x/люминофор, где InSnO_x служил прозрачным проводником. Зазор (Δ) между катодом и анодом составлял 80–500 мкм. Вольт-амперные характеристики строились в координатах (*E*, *J*) и (*U*, *I*_{*C*}), где *E* – напряженность электрического поля (B/мкм) (*E* = *U*/ Δ), *U* – разность потенциалов, *J* – плотность тока (*J* = *I*_{*C*}/*S*, где *I*_{*C*} – ток катода, *S* – площадь катода).

2. Результаты и их обсуждение

Строение слоев С_н. Слои С_н представляют собой пористый материал и состоят из углерода в виде пластин толщиной десятка нм (рис. 1,а). Пластины слоев С_н сформированы из частично связанных между собой атомными связями слоев графена, упакованных в гексагональную решетку (двухслойная укладка атомов углерода) [6, 14]. Правильность упаковки слоев графена проявляется при осаждении магнетронным распылением на поверхность пластин С_н пленки Мо толщиной ~10 нм. Пленка Мо выявила ступенчатый характер поверхности с расположением краев ступеней под углом 120° , что характерно для послойного роста графита.

В структуре Si/C_H-2 в ~2 раза большая концентрация пластин, по сравнению с Si/C_H (рис. 1,б). В слоях C_H-2, помимо пластин наблюдаются углеродные нанотрубки и наностержни (свернутые в трубки пластины, без образования замкнутых структур) (рис. 1,б). Дифракционные максимумы на рентгеновских дифрактограммах показали, что слои С_Н представляют сочетание кристаллических фаз углерода: 3 модификации графита (гексагональная сингония: пространственные группы *P6*₃/*mmc*, *R*3 и *P*3); карбин и др. Если принять пластины C_H за графит, то рассчитанная по рентгеновским дифрактограммам (уширение дифракционных максимумов 0002 графита) толщина пластин (размер кристаллитов – областей когерентного рассеяния рентгеновского излучения) составляет ~10 нм. С учетом межплоскостного расстояния решетки графита в кристаллографическом направлении <0001>

равного 0,3354 нм, можно предполагать содержание в пластинах C_H ~30 слоев графена.

Рис. 1. РЭМ-изображение слоистых структур: *a*) Si/C_H; δ) Si/C_H-2.

В спектрах КРС (рис. 2), отражающих состав и строение C_H [**15**, **16**], наблюдались интенсивные полосы *D*, *G* и 2*D*, расположенные при сдвиге КРС Δv 1326–1343 см⁻¹, 1577–1591 см⁻¹ и 2653–2673 см⁻¹, соответственно. Одновременно фиксируются слабые полосы при Δv 1081–1167 см⁻¹ (полоса *x*); 1608–1627 (полоса *D'*); 2449–2482 (полоса *x*+*D*); 2909–2934 (полоса *D*+*G*) и 3221–3248 см⁻¹ (полоса 2*D'*). В представленной работе полосы в спектрах КРС слоев C_H обозначали символами *D*, *G*, *x*, *D'*, *x*+*D*, 2*D*, *D*+*G* и 2*D'* [16–19]. Соотношение интенсивностей полос от C_H на спектрах КРС, в зависимости от толщины слоев C_H и материала подложки, может меняться в значительных пределах по поверхности катода: $I_D/I_G \approx 0,3-2,1$; $I_D/I_{2D} \approx 1,0-1,3$; $I_D/I_{D+G} \approx 14-18$; $I_D/I_{2D} \approx 13-16$.

Рис. 2. Спектр КРС слоя С_Н, выращенного на подложке из Si.

Строение пленок AIN. Пленки AIN состояли из кристаллической и аморфной фаз. До толщины ~20 нм пленки рентгеноаморфны и образованы нанокристаллитами размером < 1 нм (рис. 3,*a*). Пленки толщиной 20–30 нм образованы нанокристаллитами конической формы в виде пирамидок, основания которых имеют псевдогексагональную форму (рис. 3,*б*, где светлые полосы – аморфная фаза)). Для слоистых структур Si/C_H/AlN наблюдалось утолщение пластин C_H (рис. 3,*в*).

Рис. 3. ПЭМ-изображение выращенных на подложке из плавленого кварца пленок AlN толщиной: *a*) 7 нм; *б*) 30 нм; *в*) РЭМ-изображение слоистой структуры Si/C_H/AlN.

Рентгеновские дифрактограммы пленок AlN толщиной > 0,2 мкм показывают, что кристаллиты аксиально текстурированы по <0001>. Текстурирование пленки AlN совершенствуется по мере увеличения толщины. Кристаллическая фаза пленок AlN имела строение от разупорядоченной до ограниченной текстуры с разориентацией кристаллитов относительно оси текстуры < 0,5°. Легирующая примесь входила как в аморфную, так и в кристаллическую фазы пленок. Размер кристаллитов нелегированных пленок AlN составлял 30–60 нм, легированных – 20–50 нм.

На спектре КРС текстурированной пленки AlN толщиной ~2 мкм наблюдали интенсивные полосы при ∆v 609 и 653 см⁻¹. Рентгеноаморфное строение приводит к уширению и смещению полос, характерных для кристаллического строения, и появлению дополнительных полос. Положение,

<u>ЖУРНАЛ РАДИОЭЛЕКТРОНИКИ, ISSN 1684-1719, N10, 2019</u>

форма и интенсивность полос на спектрах КРС отличаются для пленок AlN, сформированных различными методами [20, 21]. На спектрах КРС рентгеноаморфных пленок AlN толщиной ~0,05 мкм наблюдали размытые полосы в области Δv 240, 310 и 550 см⁻¹. Спектры КРС рентгеноаморфных пленок AlN толщиной 0,1–0,3 мкм характеризуются размытыми слабыми полосами при Δv 636–639; 690–692; 785–796 и ~837 см⁻¹ (рис. 4,*a*,*б*), положение и интенсивность которых зависят от температуры подложки, определяющей концентрацию и размер кристаллитов. Для спектров КРС подложки из стекла характерны полосы средней интенсивности вблизи Δv ~435–461; ~487–491 и ~602–605 см⁻¹ (рис. 4,*a*).

Рис. 4. Спектры КРС пленок AlN, выращенных при различных условиях на подложках из: *a*) стекла (концентрация N₂ в газовой смеси: 60 % (1); 50 % (2); толщина пленок ~0,15 мкм); *б*) Si (температура подложек: 570 К (1); 620 К (2); 720 К (3); толщина пленок ~0,3 мкм).

Характеристики автоэмиссионных катодов. В качестве параметров автоэмиссионных катодов принимались плотность эмиссионных центров и порог автоэмиссии – наименьшее значение напряженности поля, при котором регистрируется эмиссионный ток. Автоэлектронная эмиссия слоев C_H зависела от взаимного расположения и размеров кристаллитов (пластин). В слоях C_H

эмиссия электронов усиливалась электрическим полем на ориентированных преимущественно перпендикулярно подложке пластинах. Структуры Si/C_H характеризуются высоким (> 5 В/мкм) порогом автоэлектронной эмиссии (рис. 5), малой плотностью эмиссионных центров и неоднородностью эмиссионных центров по поверхности катода. Использование структуры Si/C_H-2 существенно уменьшает порог автоэлектронной эмиссии (рис. 5).

Рис. 5. Вольт-амперные характеристики структур: $1 - Si/C_H$; $2 - Si/C_H$ -2.

Рис. 6. Вольт-амперные характеристики, полученные от слоистых структур: *a*) Si/C_H (1, 2); Si/C_H-2 (3, 4) (кривые 1-3 получены при измерениях в импульсном режиме, 4 - в постоянном режиме); б) Si/C_H (1, 3); Si/C_H-2 (4, 6); Si/C_H/Ni/C_H (2,

5) (кривые 1–4 получены при измерениях в импульсном режиме, 5, 6 – в постоянном режиме).

Вольт-амперные характеристики, представленные на рис. 6, указывают на улучшение эмиссионных свойств структуры Si/C_H/Ni/C_H (толщина пленки Ni ~10 нм) по сравнению со структурой Si/C_H-2. Из исследованных автоэмиссионных катодов лучшей однородностью автоэмиссионного тока

обладают эмитирующие слои на основе структуры Si/C_H/Ni/C_H. Значения порога автоэлектронной эмиссии для структур Si/C_H-2 и Si/C_H/Ni/C_H отличались незначительно.

Были исследованы эмиссионные характеристики автоэмиссионных катодов, включающих слой ОМ. Структура Si/OM/Ni/C_H показала уменьшение эмиссионного порога (рис. 7). Было установлено, что на вольт-амперные характеристики автоэмиссионных катодов со слоем C_H толщиной до ~3 мкм влияет рельеф и состав подложки (рис. 7,*a*), и не влияет толщина слоя С_Н (рис. 7.б). Расстояние между соседними вершинами нанобугристости поверхности катода со слоем ОМ равно диаметру шаровых частиц SiO₂, равному 250-260 нм, при этом вершины шаровых частиц не совпадают с центрами эмиссии.

Рис. 7. Вольт-амперные характеристики, полученные от слоистых структур: *a*) $1 - \text{Si/C}_{\text{H}}$; $2 - \text{Si/OM/Ni/C}_{\text{H}}$; *б*) Si/OM/Ni/C_H (толщина слоя C_H: 1 - 0,7 мкм; 2 - 1,4 мкм; 3 - 2,1 мкм).

В Si/C_H/AlN экспериментах co структурами использовали кристаллические наноструктурированные и аморфные пленки AlN, а также пленки AlN толщиной ~10 нм, легированные Мо (AlN_{Mo}) и Zn (AlN_{Zn}). Улучшение эмиссионных свойств слоев C_H достигалось за счет осаждения на их AlN поверхность наноструктурированных пленок (слоистая структура $Si/C_H/AlN$). Было обнаружено возрастание крутизны вольт-амперных характеристик структуры Si/C_H/AlN без уменьшения порога эмиссии, по сравнению с автоэмиссионным катодом со структурой Si/C_H (рис. 8,*a*). Было

установлено, что у текстурированных пленок AlN максимумы тока эмиссии соответствуют вершинам кристаллитов. Легирование пленок AlN не приводило к снижению порога эмиссии.

Рис. 8. Вольт-амперные характеристики слоистых структур: *a*) $1 - \text{Si/C}_{\text{H}}$; $2 - \text{Si/C}_{\text{H}}/\text{AlN}$; *б*) $1 - \text{Si/C}_{\text{H}}$; $2 - \text{Si/OM/Ni/C}_{\text{H}}$; $3-5 - \text{Si/OM/Ni/C}_{\text{H}}/\text{AlN}$ (толщина пленки AlN: 3 - 20 нм; 4 - 40 нм; 5 - 100 нм).

Вольт-амперные характеристики слоистых структур Si/OM/Ni/C_H и Si/OM/Ni/C_H/AlN показали лучшие эмиссионные свойства по сравнению со структурой Si/C_H (рис. 8, δ). Эмиссионные свойства автоэмиссионных катодов со структурой Si/OM/Ni/C_H/AlN зависят от толщина пленки AlN.

Заключение

Методом тлеющего разряда активированной углеродсодержащей газовой смеси были выращены слои C_H, а методом реактивного ВЧ-магнетронного распыления пленки AlN. Строение слоев C_H и пленок AlN изучено электронной микроскопией, рентгеновской дифрактометрией и спектрометрией КРС. Показано, что пластины C_H состоят из слоев графена, а пленки AlN – из аморфной и аксиально текстурированной кристаллической фаз.

Представлены результаты исследования связи строения слоев C_H и пленок AlN с характеристиками автоэмиссионных катодов, изготовленных на их основе. Были измерены вольт-амперные характеристики слоистых структур: Si/C_H, Si/C_H-2, Si/C_H/Ni/C_H, Si/C_H/AlN, Si/OM/Ni/C_H, Si/OM/Ni/C_H/AlN. Для снижения порога эмиссии на ростовую поверхность слоев C_H наносили

пленки AlN. Были наноструктурированные исследованы эмиссионные включающих характеристики автоэмиссионных катодов, слой OM правильных упаковок шаровых наночастиц аморфного SiO₂. Рассмотренные вольт-амперные характеристики позволяют прогнозировать структуру многослойного катода и строение эмитирующего слоя для улучшения эксплуатационных характеристик автоэмиссионных катодов.

Работа выполнена при поддержке РФФИ (грант 18-07-00282 А).

Литература

- Belyanin A.F., Nalimov S.A., Luchnikov A.P., Bagdasaryan A.S. Properties of planar structures based on policluster films of diamond and AlN. *IOP Conference Series: Materials Science and Engineering 6. "6th International Conference: Modern Technologies for Non-Destructive Testing"*. 2018. P.012041. DOI: 10.1088/1757-899X/289/1/012041.
- Collins J.L. Diamond-like carbon (DLC) a review. *Industrial diamond review*. 1998. Vol.58. No.578. P.90–92.
- Белянин А.Ф., Багдасарян А.С. Слоистая структура на основе пленок поликластерного алмаза и AlN для устройств на поверхностных акустических волнах // Успехи современной радиоэлектроники. 2017. № 3. С. 30–38.
- Spitsyn B.V., Blaut–Blachev A.N., Bouilov L.L., Zhirnov V.V., Bormatova L.V., Givargizov E.I., Belyanin A.F., Pashchenko P.V. Field emitters based on *Si* tips with AlN coating // Diamond and Related Materials. 1998. № 7. № 2–5. P. 692– 694.
- Busta H.H., Chen J.M., Shen Z., Jansen K., Rizkowski S., Matey J., Lanzillotto A. Characterization of electron emitters for miniature x-ray sources // Journal of Vacuum Science & Technology B. 2003. Vol. 21. P. 344–349. DOI 10.1116/1.1529657
- 6. Tzeng Y., Chen C-L., Chen Y-Y., Liu C-Y. Carbon nanowalls on graphite for cold

cathode applications. *Diamond and Related Materials*. 2010. Vol.19 (2–3). P.201–204. DOI 10.1016/j.diamond.2009.08.005

- Wang H-X., Jiang N., Zhang H., Hiraki A. Growth of a three dimensional complex carbon nanoneedle electron emitter for fabrication of field emission devices. *Carbon.* 2010. Vol.48. P.4483–4488. DOI <u>10.1016/j.carbon.2010.08.008</u>
- 8. Белянин А.Ф., Борисов В.В., Самойлович М.И., Багдасарян А.С. Влияние термической лазерного облучения И обработки на строение И свойства углеродных наностенок Поверхность. автоэмиссионные // Рентгеновские, синхротронные и нейтронные исследования. 2017. № 3. C. 16–26. DOI: 10.7868/S0207352817030052
- Белянин А.Ф., Борисов В.В., Багдасарян А.С. Наноструктурированные углеродные материалы в эмиссионной электронике // Российский технологический журнал. 2017. Т. 5. № 3(17). С. 22–40.
- 10. Белянин А.Ф., Борисов В.В., Тимофеев М.А., Ламский А.Н. Ненакаливаемые катоды на основе углеродных наноструктурированных слоистых структур // Технология и конструирование в электронной аппаратуре. 2013. № 4. С. 31–36.
- 11. Wang C.C., Chiu M.C., Shiao M.H., Shieua F.S. Characterization of AlN thin films prepared by unbalanced magnetron sputtering. *Journal of The Electrochemical Society*. 2004. Vol.151. No.10. P.252–256.
- Самойлович М.И., Бовтун В., Ринкевич А.Б., Белянин А.Ф., Клещева С.М., Кемпа М., Нужный Д. Пространственно-неоднородные материалы на основе решетчатых упаковок наносфер SiO₂ // Инженерная физика. 2010. № 6. С. 29–38.
- Rinkevich A.B., Burkhanov A.M., Samoilovich M.I., Belyanin A.F., Kleshcheva S.M., Kuznetsov E.A. Three-dimensional nanocomposite metal dielectric materials on the basis of opal matrices. *Russian Journal of General Chemistry*. 2013. Vol.83. No.11. P.2148–2158.
- 14. Tzeng Y, Chen W. L, Wu C., Lo J-Y., Li C-Y. The synthesis of graphene nanowalls on a diamond film on a silicon substrate by direct-current plasma

chemical vapor deposition. *Carbon*. 2013. V. 53. P. 120–129. DOI <u>10.1016/j.carbon.2012.10.038</u>

- 15. Pimenta M.A., Dresselhaus G., Dresselhaus M.S., Cancado L.G., Jorio A., Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical physics. 2007. Vol. 9. P. 1276–1291.
 DOI <u>10.1039/b613962k</u>
- Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electronphonon coupling, doping and nanodiabatic effects // Solid state communications. 2007. Vol.143. P.47–57.

DOI <u>10.1016/j.ssc.2007.03.052</u>

- Thornton J.Di-M. Carbon Nanowalls: Processing, Structure and Electrochemical Properties. A dissertation submitted to the Graduate Faculty of North Carolina State University. 2011. P. 55.
- Shang N.G., Staedler T., Jiang X. Radial textured carbon nano flake spherules. *Applied Physics Letters*. 2006. Vol.89. P.103-112. DOI 10.1063/1.2346314
- Ferrari A.C., Meyer J.C., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K.S., Roth S., Geim A.K. Raman spectrum of graphene and graphene layers. *Physical Review Letters*. 2006. Vol. 97. 187401. DOI 10.1103/PhysRevLett.97.187401
- Oliveira C., Otani C., Maciel H.S. et al. Raman active E2 modes in aluminum nitride films. *Journal of Materials Science: Materials in Electronics*. 2001. Vol.12. P.259–262.
- 21. Liu L., Liu B., Edgara J.H., Rajasingam S., Kuball M. Raman characterization and stress analysis of AlN grown on SiC by sublimation. *Journal of Applied Physics*. 2002. Vol. 92. No.9. P.5183–5188.

Для цитирования:

С.А.Багдасарян, С.А.Налимов, А.И.Юрин, Е.Р.Павлюкова. Многослойные структуры на основе углеродных наностенок и нитрида алюминия в автоэмиссионных катодах. Журнал радиоэлектроники [электронный журнал]. 2019. № 10. Режим доступа: http://jre.cplire.ru/jre/oct19/12/text.pdf DOI 10.30898/1684-1719.2019.10.12