"JOURNAL OF RADIO ELECTRONICS" (Zhurnal Radioelektroniki ISSN 1684-1719, N 10, 2019

contents of issue      DOI  10.30898/1684-1719.2019.10.7     full text in Russian (pdf)  

Optimization of manufacturing a bootstrapped analogue switch based on heterostructures to increase the density of its elements. Influence of miss-match induced stress

 

E. L. Pankratov 1,2

1 Nizhny Novgorod State University, 23 Gagarin avenue, Nizhny Novgorod, 603950, Russia

2 Nizhny Novgorod State Technical University, 24 Minin Street, Nizhny Novgorod 603950, Russia

 

The paper is received on October 9, 2019

 

Abstarct. In this paper we introduce an approach to increase density of field-effect transistors framework a bootstrapped analogue switch. Framework the approach we consider manufacturing the inverter in heterostructure with specific configuration. Several required areas of the heterostructure should be doped by diffusion or ion implantation. After that dopant and radiation defects should by annealed framework optimized scheme. We also consider an approach to decrease value of mismatch-induced stress in the considered heterostructure. We introduce an analytical approach to analyze mass and heat transport in heterostructures during manufacturing of integrated circuits with account mismatch-induced stress.

Keywords: bootstrapped analogue switch, optimization of manufacturing, increasing of element integration rate.

References

1. V.I. Lachin, N.S. Savelov. Elektronika [Electronics]. Rostov-on-Don, Feniks Publ., 2001. (In Russian)

2. A. Polishscuk. Anadigm Programmable Analog ICs: The entire spectrum of analog electronics on a single chip. First meeting. Sovremennaya elektronika [Modern Electronics]. 2004. No. 12. P. 8-11. (In Russian)

3. G. Volovich. Modern Models of Integrated Operational Amplifiers. Sovremennaya elektronika [Modern Electronics]. 2006. No. 2. P. 10-17. (In Russian)

4. A. Kerentsev, V. Lanin. Comparative characteristics of methods for mounting MISFET crystals of power transistors. Silovaya Elektronika [Power Electronics]. 2008. No. 1. P. 34. (In Russian)

5. A.O. Ageev, A.E. Belyaev, N.S. Boltovets, V.N. Ivanov, R.V. Konakova, Ya.Ya. Kudrik, P.M. Litvin, V.V. Milenin, A.V. Sachenko. Au-TiBx-n-6H-SiC Schottky barrier diodes: Specific features of charge transport in rectifying and nonrectifying contacts. Semiconductors. 2009. Vol. 43. No. 7. P. 865-871.  DOI https://doi.org/ 10.1134/S1063782609070070

6. Jung-Hui Tsai, Shao-Yen Chiu, Wen-Shiung Lour, Der-Feng Guo. High- performance InGaP/GaAs pnp δ-doped heterojunction bipolar transistor. Semiconductors. 2009. Vol. 43. No. 7. P. 939-942. DOI https://doi.org/10.1134/ S1063782609070227.

7 O.V. Alexandrov, A.O. Zakhar'in, N.A. Sobolev, E.I. Shek, M.M. Makoviychuk, E.O. Parshin. Formation of donor centers upon annealing of dysprosium-and holmium-implanted silicon. Semiconductors. 1998. Vol. 32. No. 9. P. 921-923.  DOI https://doi.org/10.1134/1.1187515

8. I.B. Ermolovich, V.V. Milenin, R.A. Red'ko, S.M. Red'ko. Specific features of recombination processes in CdTe films produced in different temperature conditions of growth and subsequent annealing. Semiconductors. 2009. Vol. 43 No.8. P. 980-984. DOI https://doi.org/10.1134/S106378260908003X

9. P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl. Phys. Lett. 2013. Vol. 102. No. 5.P. 053901-053905. DOI https://doi.org/10.1063/1.4789855.

10. J.G. Reynolds, C.L. Reynolds, Jr.A. Mohanta, J.F. Muth, J.E. Rowe, H.O. Everitt, D.E. Aspnes. Shallow acceptor complexes in p-type ZnO. Appl. Phys. Lett. 2013. Vol. 102. No. 15. P. 152114-152118. DOI: https://doi.org/10.1063/1.4802753.

11. N.I. Volokobinskaya, I.N. Komarov, T.V. Matyukhina, V.I. Reshetnikov, A.A. Rush, I.V. Falina, A.S. Yastrebov. A study of technological processes in the production of high-power high-voltage bipolar transistors incorporating an array of inclusions in the collector region. Semiconductors. 2001. Vol. 35. No. 8. P. 974-978.

12. E.L. Pankratov, E.A. Bulaeva. Doping of materials during manufacture p-n-junctions and bipolar transistors. Analytical approaches to model technological approaches and ways of optimization of distributions of dopants. Reviews in Theoretical Science. 2013. Vol. 1. No. 1. P. 58-82. DOI https://doi.org/10.1166/rits.2013.1004.

13. S.A. Kukushkin, A.V. Osipov, A.I. Romanychev. Epitaxial growth of zinc oxide by the method of atomic layer deposition on SiC/Si substrates. Physics of the Solid State. 2016. Vol. 58. No 7. P. 1448-1452. DOI https://doi.org/10.1134/S1063783416070246

14. E.M. Trukhanov, A.V. Kolesnikov, I. D. Loshkarev. Long-range stresses generated by misfit dislocations in epitaxial films. Russian Microelectronics. 2015. Vol. 44. No 8. P. 552-558. DOI  https://doi.org/10.1134/S1063739715080119

15. E.L. Pankratov, E.A. Bulaeva. About some ways to decrease quantity of defects in materials for solid state electronic devices and diagnostics of their realization. Reviews in Theoretical Science. 2015. Vol. 3. No 4. P. 365-398. DOI https://doi.org/10.1166/rits.2015.1033

16. K.K. Ong, K.L. Pey, P.S. Lee, A.T.S. Wee, X.C. Wang, Y.F. Chong. Dopant distribution in the recrystallization transient at the maximum melt depth induced by laser annealing. Appl. Phys. Lett. 2006. Vol. 89. No. 17. P. 172111-172114. DOI https://doi.org/10.1063/1.2364834.

17. H.T. Wang, L.S. Tan, E. F. Chor. Pulsed laser annealing of Be-implanted GaN. J. Appl. Phys. 2005. Vol. 98. No. 9. P. 094901-094905. DOI https://doi.org/10.1063/1.2120893.

18. Yu.V. Bykov, A.G. Yeremeev, N.A. Zharova, I.V. Plotnikov, K.I. Rybakov, M.N. Drozdov, Yu.N. Drozdov, V.D. Skupov. Diffusion processes in semiconductor structures during microwave annealing. Radiophysics and Quantum Electronics. 2003. Vol. 43. No. 8-9. P. 749-755. DOI https:/doi.org/10.1023/B:RAQE.0000025008.2097954.1c

19. Y.W. Zhang, A.F. Bower. Numerical simulation of island formation in a coherent strained epitaxial thin film system. Journal of the Mechanics and Physics of Solids. 1999. Vol. 47. No. 11. P. 2273-2297. DOI https://doi.org/10.1016/S0022-5096(99)00026-5

20 L.D. Landau, E.M. Lifshits. Teoretichskaya fizika. Tom 7. Teoriya Uprugosti [Theoretical physics. Vol.7. Theory of elasticity]. Moscow, Physmatlit Publ., 2001. (In Russian)

21. Z.Yu. Gotra.  Tekhnologiya mikroelektronnykh ustroistv [Technology of microelectronic devices]. Moscow, Radio i Svyaz Publ., 1991. (In Russian).

22. P.M. Fahey, P.B. Griffin, J.D. Plummer. Point defects and dopant diffusion in silicon. Rev. Mod. Phys. 1989. Vol. 61. No. 2. P. 289-388. DOI https:/doi.org/10.1103/RevModPhys.61.289

23. V.L. Vinetskiy, G.A. Kholodar'. Radiatsionnaya fizika poluprovodnikov [Radiative physics of semiconductors]. Kiev, Naukova Dumka Publ., 1979. (In Russian).

24. M. Liu, J. Wang, Zh. Zhu, W. Guo, L. Liu, R. Ding. A low distortion CMOS analogue switch with high-order compensation. Analog. Integr. Circ. Sig. Process. 2015. Vol. 82. No. 2. P. 495-500. DOI  https://doi.org/10.1007/s10470-014-0483-x

25. E.L. Pankratov, E.A. Bulaeva. An approach to manufacture of bipolar transistors in thin film structures. On the method of optimization. Int. J. Micro-Nano Scale Transp. 2013. Vol. 4. No. 1. P. 17-31. DOI http://dx.doi.org/10.1260/1759-3093.4.1-2.17

26. Yu.D. Sokolov. About the definition of dynamic forces in the mine lifting. Prikladnaya Mekhanika - Applied Mechanics. 1955. Vol. 1. No. 1. P. 23-35. (In Russian)

27. E.L. Pankratov. Redistribution of dopant during annealing of radiative defects in a multilayer structure by laser scans for production an implanted-junction rectifiers. Int. J. Nanoscience. 2008. Vol. 7. No. 4-5. P. 187-197. DOI: https://doi.org/10.1142/S0219581X08005328

28. E.L. Pankratov, E.A. Bulaeva. On approach to increase integration rate of double-gate heterotransistors. Int. J. Nanoscience. 2017. Vol. 16. No. 4. P. 1650039-1650054. DOI https://doi.org/10.1142/S0219581X16500393

29. E.L. Pankratov, E.A. Bulaeva. Decreasing of quantity of radiation defects in an implanted-junction rectifiers by using overlayers. Int. J. Micro-Nano Scale Transp. 2012. Vol. 3. No. 3. P. 119-130.

30. E.L. Pankratov. Increasing of the sharpness of p-n-junctions by laser pulses. Nano. 2011. Vol. 6. No. 1. P. 31-40. DOI https://doi.org/10.1142/S1793292011002329

31. E.L. Pankratov, E.A. Bulaeva. Optimization of spatial dependence of diffusion coefficient for acceleration of dopant diffusion. Multidiscipline modeling in materials and structures. 2016. Vol. 12. No. 4. P. 672-677.  DOI https://doi.org/10.1108/MMMS-09-2015-0057

32. E.L. Pankratov, E.A. Bulaeva. On optimization of manufacturing of transistors in hybrid cascaded multilevel inverter to increase their density. Journal of computational and theoretical nanoscience. 2017. Vol. 14. No. 7. P. 3548-3555. DOI https://doi.org/10.1166/jctn.2017.6786

 

For citation:

E.L.Pankratov. Optimization of manufacturing a bootstrapped analogue switch based on heterostructures to increase the density of its elements. Influence of miss-match induced stress. Zhurnal Radioelektroniki - Journal of Radio Electronics. 2019. No. 10. Available at http://jre.cplire.ru/jre/oct19/7/text.pdf

DOI  10.30898/1684-1719.2019.10.7