Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2020. No. 10
Contents

Full text in Russian (pdf)

Russian page

 

DOI  https://doi.org/10.30898/1684-1719.2020.10.3

UDC 537.8

 

Dynamic model of control of vibration damping mode by fiber optic PEL-sensor with phase shifting of control electric voltage

 

A. A. Pan’kov

Perm National Research Polytechnic UniversityKomsomolsky prosp., 29, Perm 614990, Russia


The paper is received on September 29, 2020

 

Abstract. A mathematical dynamic model of the operation of the vibration pressure optical fiber piezoelectroluminescent (PEL) sensor in the damping mode was developed taking into account the electrical conductivities and Maxwell-Wagnerian relaxation of electric fields in the phases for the case of harmonic stress (vibration pressure) on the external cylindrical surface of the sensor. Analytical solution of damping of stationary axisymmetric oscillations of optical fiber PEL-sensor is obtained and investigated by applying coherent control electric voltage to electrodes of sensor with phase shifting relative to vibration pressure. Regularities of frequency dependencies for real, imaginary parts of control, informative transfer and damping coefficients of sensor are established and studied. Analysis of influence of value and shift angle of phases of control electric voltage on results of numerical simulation for intensity of light flux at output from optical fiber of sensor under action of vibration pressure is performed. Frequency dependencies were found for the electrical impedance of the AC electric circuit of the sensor in comparison with the approximation of these dependencies by electromechanical analogy. It was revealed that in the frequency range under consideration, the electrical impedance of the sensor with satisfactory accuracy is based on consideration of an equivalent electric circuit with parallel connection of frequency-dependent active and capacitive elements. Frequency range and values of control parameters are set for effective active damping of vibration pressure through conversion to Joule heat (dissipation) of mechanical energy supplied to the sensor. The results of comparing the analytical and numerical (in the ANSYS package) approaches confirm the validity and adequacy of the decisions obtained.

Key words: piezoelectroelasticity, fiber-optic pressure sensor, vibration damping, Maxwell-Wagner relaxation, numerical simulation.

References

1.     Ajit A., Ang K. K., Wang C. M. Shape control of statically indeterminate laminated beams with piezoelectric actuators. Mechanics of advanced materials and structures. 2003. Vol. 10. No. 2. P. 145-160.

2.     Kayacik O., Bruch Jr. J.C., Sloss J.M., Adali S., Sadek I.S. Piezo control of free vibrations of damped beams with time delay in the sensor feedback. Mechanics of advanced materials and structures. 2009. Vol. 16. No. 5. P. 345-355.

3.     Chung D.D.L. Materials for vibration damping: Review. Journal of materials science. 2001. Vol. 36. P. 5733-5737.

4.     Sharma S.K., Gaur H., Kulkarni M., Patil G., Bhattacharya B., Sharma A. PZT–PDMS composite for active damping of vibrations. Composites science and technology. 2013. Vol. 77. P. 42-51.

5.     Aldraihem O.J., Baz A., Al-Saud T.S. Hybrid composites with shunted piezoelectric particles for vibration damping. Mechanics of advanced materials and structures. 2007. Vol. 14. No. 6. P. 413-426.

6.     Hagood N.W., von Flotow A. Damping of structural vibrations with piezoelectric materials and passive electrical networks. Journal of sound and vibration. 1991. Vol. 146. P. 243-268.

7.     Asmatulu R., Claus R.O., Mecham J.B., Inman D.J. Improving the damping properties of composites using ferroelectric inclusions. Journal of intelligent material systems and structures. 2005. Vol. 16. P. 463-468.

8.     Hori M., Aoki T., Ohira Y., Yano S. New type of mechanical damping composites composed of piezoelectric ceramics, carbon black and epoxy resin. Composites Part A: Applied science and manufacturing. 2001. Vol. 32. P. 287-290.

9.     Atamuratov A.Zh., Mihajlov I.E., Taran N.A. Extinguishing forced transverse vibrations of the elastic beam with the help of several stationary actors. Vestnik Permskogo nacional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika [Bulletin of Perm National Research Polytechnic University. Mechanics]. 2018. No. 2. P. 5-15. (In Russian)

10. Shevcov S.N., Akop'yan V.A., Panich A.A., Papinov I.A., Samoshchenko I.G. Optimization of the system of piezoactuator suppression of vibrations of the composite helicopter blade. Nano- i mikrosistemnaya tekhnika [Nano- and microsystem technology]. 2011. No. 6. P. 2-8. (In Russian)

11. Yang Kuang, Meiling Zhu Evaluation and validation of equivalent properties of macro fibre composites for piezoelectric transducer modeling. Composites Part B: Engineering. 2019. Vol. 158. P. 189-197.

12. Kligman E.P., Matveenko V.P. Natural Vibration Problem of Viscoelastic Solids as Applied to Optimization of Dissipative Properties of Constructions. Int. J. Vibration and Control. 1997. Vol. 3. No. 1. P. 87-102.

13. Matveenko V.P., Kligman E.P., YUrlov M.A., Yurlova N.A. Modeling and optimization of dynamic characteristics of smart structures with piezo materials. Fizicheskaya mezomekhanika [Physical mesomechanics]. 2012. Vol. 15. No. 1. P. 75-85. (In Russian)

14. Matveenko V.P., Oshmarin D.A., Sevodina N.V., Yurlova N.A. The problem is about the intrinsic oscillations of electro-viscous bodies with external electric circuits and finite-element relationships for its numerical implementation. Vychislitel'naya mekhanika sploshnyh sred [Computational mechanics of continuous media]. 2016. No. 4. P. 476-485. (In Russian)

15. Yurlov M.A., Oshmarin D.A., Sevodina N.V., Yurlova N.A. Solving the problem of intrinsic oscillations of electrically elastic bodies with external electric circuits based on their electrical analogue. Vestnik Permskogo nacional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika [Bulletin of Perm National Research Polytechnic University. Mechanics]. 2018. No. 4. P. 266-277. (In Russian)

16. Patent RU No. 2630537. Pan'kov A.A. Volokonno-opticheskiy datchik davleniya [Fiber-optic pressure sensor]. Published 11.09.2017. Bull. No. 26. (In Russian)

17. Pan’kov A.A. Piezoelectroluminescent fiber-optic sensors for temperature and deformation fields. Sensors and Actuators A: Physical. 2019. Vol. 288. P. 171-176.

18. Pan'kov A.A. Maxwell-Wagner relaxation of electric fields in the pyezoelektrolyuminestsentny fiber-optic sensor of vibropressure. Zhurnal Radioelectroniki – Journal of Radio Electronics. 2017. No. 11. Available at http://jre.cplire.ru/jre/nov17/6/text.pdf (In Russian)

19. Radchenko G.S., Turik A.V. Giant piezoelectric effect in layered ferroelectric–polymer composites. Physics of  the Solid State. 2003. Vol. 45. No. 9. P. 1759-1762.

20. Petrov V.M., Bichurin M.I., Srinivasan G. Maxwell-Wagnerian relaxation in magnetoelectric composites. Technical Physics Letters. 2004. Vol. 30. No. 4. P. 341-344.

21. Dolginov A.I. Rezonans v elektricheskih cepyah i sistemah [Resonance in electrical circuits and systems]. Moscow, Leningrad. Gosenergoizdat Publ. 1957. 328 p. (In Russian)

22. Pan'kov A.A. Mathematical model of pulsed pressure scanning along the length of a piezoelectroluminescent fiber optic sensor. Vestnik Permskogo nacional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mekhanika [Bulletin of Perm National Research Polytechnic University. Mechanics]. 2018. No. 1. P. 73-82. (In Russian)

23. Pan’kov A.A. Piezoelectroluminescent optical fiber sensor for diagnostics of the stress state and defectoscopy of composites. Mechanics of Composite Materials. 2017. Vol. 53. No. 2. P. 229-242.

 

For citation:

Pan’kov A.A. Dynamic model of control of vibration damping mode by fiber optic PEL-sensor with phase shifting of control electric voltage.  Zhurnal Radioelektroniki - Journal of Radio Electronics. 2020. No.10. https:/doi.org/10.30898/1684-1719.2020.10.3 (In Russian)