Zhurnal Radioelektroniki - Journal of Radio Electronics. eISSN 1684-1719. 2021. №10
ContentsFull text in Russian (pdf)
DOI: https://doi.org/10.30898/1684-1719.2021.10.11
UDC: 537.591
S. V. Tsaplin, S. A. Bolychev
Samara National Research University
443086, Samara, Moskovskoye shosse, 34
The paper was received October 10, 2021.
Abstract. The paper presents the results of a calculation to study the influence of ionizing, bremsstrahlung radiation on the functioning of a nanosatellite. A comparative analysis of the results of calculating the specific ionization and radiation energy losses of protons (from 0.1 to 400 MeV) and electrons (from 0.04 to 7 MeV), as well as their path lengths in aluminum according to the formulas of various authors and the database of materials of the National Institute of Standards and Technologies is presented. Based on the analysis results, the annual dose in the aluminum structure of the SamSat-ION nanosatellite in a circular sun-synchronous orbit (SSO) is calculated. All calculations are based on the data of the energy spectra of protons and electrons of the SSO given in the "Information system Spenvis of the European Space Agency". The results of calculating the integral fluxes in aluminum under the action of protons and electrons of a circular SSO for different thicknesses are obtained, and the fraction of passed particles is shown in the approximation of a single-layer stack. Estimation of the radiation resistance of the electronic elements ISL70321SEH, ISL73321SEH and Virtex - 4QV, Virtex -5QV included in the SamSat - ION in the approximation of a double-layer stack was made for various thickness of Si and its ability to operate during the year.
Key words: ionization, radiation losses, bremsstrahlung, absorbed, equivalent dose, radiation belts of the Earth, radiation protection, radio electronic elements, onboard equipment, small spacecraft.
2. Gul'ko O.E[Failure mechanisms of CMOS ICs when exposed to ionizing particles of cosmic radiation. Voprosy atomnoj nauki i tehniki. Ser. Fizika radiacionnogo vozdejstvija na radiojelektronnuju apparaturu [Atomic Science and Technology Issues. Physics of Radiation Effects on Electronic Equipment series]. 2005. №1-2. P.80-83.
3. Anashin V.S., Alekseev I.I., Bodin V.V., Gerasimov V.F., Golovko A.V., Davydov V.A. Ionizing radiation from outer space and their impact on the onboard equipment of spacecraft. Moscow, Fizmatlit. 2013. 358 p.
4. Tsaplin S.V., Tjulevin S.V., Piganov M.N., Bolychev S.A. Investigation of the properties of radioelectronic elements under the influence of an ionization flow. Samara University Publ. 2018. 180 p.
5. OST 134-1034-2003. Industry standard. Spacecraft apparatus, devices, devices and equipment. Methods for testing and assessing the resistance of onboard radio-electronic equipment of spacecraft to the effects of electronic and proton radiation from outer space by dose effects. Moscow, CNII mashinostroenija. 2003.
6. RD 134-0139-2005. Regulatory document for the standardization of RKT. Spacecraft apparatus, devices, devices and equipment. Methods for assessing the resistance to the impact of charged particles of outer space by single failures and failures. Moscow, CNII mashinostroenija. 2005.
7. RD V 319.03.39-2000. Electronic products. Control and prediction of safety in conditions of long-term combined exposure to low-intensity ionizing radiation and thermal current loads based on the results of accelerated tests. Moscow. 2000.
8. RD 11 1003-2000. Guidance document. Semiconductor electronics products. Method for predicting reliability under conditions of low-intensity ionizing radiation. Sankt-Peterburg, RNII «Jelektronstandart». 2000.
9. Lishnevskij A.Je., Bengin V.V. Methodology for short-term prediction of the dynamics of absorbed dose accumulation at the International Space Station according to the radiation monitoring system. Vestnik NPO im. S.A. Lavochkina [Bulletin of S.A. Lavochkin NGO]. 2013. №5 (21). P.54-59.
10. Zebrov G.I. Modeling dose and single radiation effects in silicon micro- and nanoelectronic structures for design and prediction circuits. Moscow, MIFI Publ. 155 p.
11. Methods for testing and assessing the resistance of onboard radio-electronic equipment of spacecraft with long periods of active existence to the effects of ionizing radiation from outer space. Voprosy atomnoj nauki i tehniki. Ser. Fizika radiacionnogo vozdejstvija na radiojelektronnuju apparaturu [Atomic Science and Technology Issues. Physics of Radiation Effects on Electronic Equipment series]. 2001. №3-4. P.81-87.
12. Akimov A.A., Gricenko A.A., Jur'ev R.N. Sun-synchronous orbits - main opportunities and prospects. Ionosfera [Ionosphere]. 2015. №68. P.29-38.
13. Tapero K.I., Didenko S.I. Fundamentals of radiation resistance of electronic products: radiation effects in electronic products. Dom MISiS Publ. 2013. 349 p.
14. Tapero K.I., Ulimov V.N., Chlenov A.M. Radiation Effects in Silicon Integrated Circuits for Space Applications. BINOM, Laboratorija znanij. 2012. 304 p.
15. Lukyashchenko V.I., Uzhegov V.M., Yakovlev M.V. Radiation conditions on board spacecraft. Voprosy atomnoj nauki i tehniki. Ser. Fizika radiacionnogo vozdejstvija na radiojelektronnuju apparaturu [Atomic Science and Technology Issues. Physics of Radiation Effects on Electronic Equipment series]. 2004. №1-2. P.3-16.
16. Demidov A.A., Ilyaguev B.N., Kalashnikov O.A. Investigations of the radiation resistance of submicron CMOS VLSI on SOI structures. Radiacionnaja stojkost' jelektronnyh sistem [Radiation Resistance of Electronic Systems] 2004. №7. P.77-78.
17. Agahanjan T.M., Astvacatur'jan E. R., Skorobogatov P.K. Radiation Effects in Silicon Integrated Circuits. Jenergoatoizdat Publ. 1989. 256 p.
18. Vologdin Je.N., Lysenko A.P. Radiation effects in some class of semiconductor devices. Moscow. 2001. 70 p.
19. Vologdin Je.N., Lysenko A.P. Radiation Effects in Integrated Circuits and Methods for Testing Semiconductor Electronics Products for Radiation Resistance. NOC MGIJeM Publ. 2002. 46 p.
20. Spenvis Information System of the European Space Agency. URL: www.spenvis.oma.be (date of access 15.07.2021).
21. Bezrodnyh E.I., Kazancev S.G., Semenov V.T. Radiation conditions in sun-synchronous orbits during the period of maximum solar activity. Voprosy jelektromehaniki [Electromechanics issues]. Trudy NPP VNIIJeM. FGUP «NPP VNIIJeM» Publ. 2010. V.116. P.23-26.
22. Bespalov V.I. Radiation protection lectures. Tomsk politehnich university Publ. 2017. 695 p.
23. Pavlenko V.I., Edamenko O.D, Cherkashina N.I., Noskov A.V. Total energy loss of a relativistic electron passing through a polymer composite material. Poverhnost'. Rentgenovskie, sinhrotronnye i nejtronnye issledovanija [Surface. X-ray, synchrotron and neutron research]. 2014. №4. P.101-106.
24. Bjakov V.M., Stepanov S.V., Magomedbekov Je.P. The beginnings of radiation chemistry. RHTU by D.I. Mendeleev Publ. 2013. 192 p.
25. Bekman I.N. Atomic and Nuclear Physics: Radioactivity and Ionizing Radiation. Jurajt Publ. 2017. 398 p.
26. Muhin K.N. Experimental nuclear physics. Book 1. Physics of the atomic nucleus. Part1. Jenergoatomizdat Publ. 1993. 376 p.
27. Database based on the materials of the National Institute of Standards and Technology (NIST).
URL: https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html (date of access 15.07.2021).
28. Zhukovskij M.E., Skachkov M.V. On statistical methods of electron transfer in matter. Vestnik MGTU im. N.Je. Baumana. Ser. “Estestvennye nauki” [Bulletin of the Moscow State University named after Bauman. Natural Sciences]. 2009. №1. P.31-46.
29. RD 50-25645.216-90. Methodical instructions. Radiation safety of the spacecraft crew in space flight. Method for calculating the distribution of absorbed and equivalent doses of cosmic radiation over the thickness of materials on the outer surface of a spacecraft in orbits passing through Earth's Van Allen Radiation Belts. Standart Publ. 1990. 10 p.
30. Hasanshin R.H., Novikov L.S. Changes in the transmission spectrum of K-208 glass under the action of ionizing radiation and molecular fluxes. Poverhnost'. Rentgenovskie, sinhrotronnye i nejtronnye issledovanija [Surface. X-ray, synchrotron and neutron research]. 2014. №7. P.83-87.
31. Thompson S., Alavi M., Hussein M., Jacob P., Kenyon C., Moon P., Prince M., SivakumarS., Tyagi S., Bohr M. 130nm Logic Technology Featuring 60nm Transistors, Low-K Dielectrics, and Cu Interconnects. Intel Yechnology Journal. 2002. V.6. №2. P.5-13.
32. Radiation hardened quad power supply sequencers. ISL70321SEH, ISL73321SEH. https://www.renesas.com/us/en/document/dst/isl70321seh-isl73321seh-datasheet. Date of access 15.07.2021. URL.
33. Space-grade Virtex-5QV FPGA. URL: https://www.xilinx.com/products/silicon-devices/fpga/virtex-5qv.html (date of access 15.07.2021).
34. Radiation-hardened FPGA for defense and aerospace application. URL: www.xilinx.com (date of access 15.07.2021).
35. Zebrev G.I. Radiation effects in highly integrated silicon integrated circuits. MIFI, 2010, 148 p.
36. XILINX's new family of radiation hardened microcircuits. URL: https://www.macrogroup.ru/news/2014/140 (date of access 15.07.2021).
37. Schmidt F.H.Jr. Fault tolerant design implementation on radiation hardened by design SRAM-based FPGAs. M.S. thesis, Massachusetts Institute of Technology, Boston, MA, 2013. URL: https://dspace.mit.edu/handle/1721.1/82490 (date of access 15.07.2021).
38. Belous A.I., Solodukha V.A., Shvedov S.V. Space electronics. Book 2. Moscow, Tekhnosfera. 2015. 488 p.
For citation:
Tsaplin S.V., Bolychev S.A. Estimation and analysis of the influence of ionizing radiation on the nanosatellite onboard radio electronic equipment functioning. Zhurnal Radioelektroniki [Journal of Radio Electronics] [online]. 2021. №10. https://doi.org/10.30898/1684-1719.2021.10.11 (In Russian)